Spaces:
Runtime error
Runtime error
File size: 5,053 Bytes
9551276 3be135a 5e72808 95edb23 e66305d 5e72808 c93e6a7 2bcefc7 c93e6a7 2bcefc7 95edb23 c93e6a7 14f07e7 2bcefc7 c93e6a7 3be135a 14f07e7 5e72808 3be135a 95edb23 5e72808 2bcefc7 110c323 bb25d5e 5e72808 e42b84a 5d31a12 5e72808 c93e6a7 e66305d 70e2653 e66305d b6a7f07 74076d1 9bb0840 95edb23 70e2653 95edb23 70e2653 95edb23 70e2653 95edb23 c93e6a7 5d135b7 c93e6a7 c3a6074 c93e6a7 5d135b7 ddde924 5d135b7 c3a6074 5d135b7 bc69648 5d135b7 5b1af87 b016235 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import os
import random
import gradio as gr
from groq import Groq
from moviepy.editor import VideoFileClip, TextClip, CompositeVideoClip
import numpy as np
# Initialize client with API key
client = Groq(
api_key=os.getenv("Groq_Api_Key")
)
if client.api_key is None:
raise EnvironmentError("Groq_Api_Key environment variable is not set.")
# Helper to create messages from history
def create_history_messages(history):
history_messages = [{"role": "user", "content": m[0]} for m in history]
history_messages.extend([{"role": "assistant", "content": m[1]} for m in history])
return history_messages
# Generate response function
def generate_response(prompt, history, model, temperature, max_tokens, top_p, seed):
messages = create_history_messages(history)
messages.append({"role": "user", "content": prompt})
if seed == 0:
seed = random.randint(1, 100000)
stream = client.chat.completions.create(
messages=messages,
model=model,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
seed=seed,
stop=None,
stream=True,
)
response = ""
for chunk in stream:
delta_content = chunk.choices[0].delta.content
if delta_content is not None:
response += delta_content
yield response
return response
# Process video function
from moviepy.editor import VideoFileClip, TextClip, CompositeVideoClip
from PIL import Image
# Adjusting MoviePy's resize function to use Image.LANCZOS directly
def process_video(text):
video_folder = "videos"
video_files = [os.path.join(video_folder, f) for f in os.listdir(video_folder) if f.endswith(('mp4', 'mov', 'avi', 'mkv'))]
if not video_files:
raise FileNotFoundError("No video files found in the specified directory.")
selected_video = random.choice(video_files)
video = VideoFileClip(selected_video)
start_time = random.uniform(0, max(0, video.duration - 60))
video = video.subclip(start_time, min(start_time + 60, video.duration))
# Manually resize using PIL to avoid the issue
def resize_image(image, new_size):
pil_image = Image.fromarray(image)
resized_pil = pil_image.resize(new_size[::-1], Image.LANCZOS)
return np.array(resized_pil)
new_size = (1080, int(video.h * (1080 / video.w)))
video = video.fl_image(lambda image: resize_image(image, new_size))
video = video.crop(x1=video.w // 2 - 540, x2=video.w // 2 + 540)
text_lines = text.split()
text = "\n".join([" ".join(text_lines[i:i+8]) for i in range(0, len(text_lines), 8)])
text_clip = TextClip(text, fontsize=70, color='white', size=video.size, method='caption')
text_clip = text_clip.set_position('center').set_duration(video.duration)
final = CompositeVideoClip([video, text_clip])
output_path = "output.mp4"
final.write_videofile(output_path, codec="libx264")
return output_path
# Additional inputs for the chat interface
additional_inputs = [
gr.Dropdown(choices=["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma-7b-it"], value="llama3-70b-8192", label="Model"),
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Temperature", info="Controls diversity of the generated text. Lower is more deterministic, higher is more creative."),
gr.Slider(minimum=1, maximum=32192, step=1, value=4096, label="Max Tokens", info="The maximum number of tokens that the model can process in a single response.<br>Maximums: 8k for gemma 7b, llama 7b & 70b, 32k for mixtral 8x7b."),
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Top P", info="A method of text generation where a model will only consider the most probable next tokens that make up the probability p."),
gr.Number(precision=0, value=42, label="Seed", info="A starting point to initiate generation, use 0 for random")
]
# Gradio interface with blocks and tabs
# Chat Interface
def create_chat_interface():
return gr.ChatInterface(
fn=generate_response,
chatbot=gr.Chatbot(
show_label=False,
show_share_button=False,
show_copy_button=True,
likeable=True,
layout="panel"
),
additional_inputs=additional_inputs,
title="YTSHorts Maker",
description="Powered by GROQ, MoviePy, and other tools."
)
# Main app definition
with gr.Blocks(theme=gr.themes.Soft(primary_hue="red", secondary_hue="pink")) as demo:
with gr.Tabs():
# Chat Ta
with gr.TabItem("Video Processing"):
text_input = gr.Textbox(lines=5, label="Text (8 words max per line)")
process_button = gr.Button("Process Video")
video_output = gr.Video(label="Processed Video")
process_button.click(
fn=process_video,
inputs=text_input,
outputs=video_output,
)
# Launch the Gradio interface
if __name__ == "__main__":
demo.launch() |