File size: 5,053 Bytes
9551276
3be135a
5e72808
 
95edb23
e66305d
5e72808
c93e6a7
2bcefc7
c93e6a7
2bcefc7
95edb23
c93e6a7
 
 
 
14f07e7
 
 
 
2bcefc7
c93e6a7
3be135a
14f07e7
 
5e72808
3be135a
 
95edb23
5e72808
2bcefc7
110c323
 
 
 
bb25d5e
5e72808
 
 
 
 
 
e42b84a
5d31a12
 
 
5e72808
 
 
c93e6a7
e66305d
 
 
 
70e2653
 
 
 
 
 
 
 
 
 
e66305d
 
 
 
 
 
 
 
 
 
b6a7f07
74076d1
9bb0840
 
 
95edb23
70e2653
95edb23
70e2653
95edb23
 
70e2653
95edb23
 
c93e6a7
5d135b7
 
 
 
 
 
 
 
c93e6a7
c3a6074
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c93e6a7
5d135b7
ddde924
5d135b7
 
 
 
c3a6074
5d135b7
 
bc69648
5d135b7
 
5b1af87
b016235
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import random
import gradio as gr
from groq import Groq
from moviepy.editor import VideoFileClip, TextClip, CompositeVideoClip
import numpy as np

# Initialize client with API key
client = Groq(
    api_key=os.getenv("Groq_Api_Key")
)

if client.api_key is None:
    raise EnvironmentError("Groq_Api_Key environment variable is not set.")

# Helper to create messages from history
def create_history_messages(history):
    history_messages = [{"role": "user", "content": m[0]} for m in history]
    history_messages.extend([{"role": "assistant", "content": m[1]} for m in history])
    return history_messages

# Generate response function
def generate_response(prompt, history, model, temperature, max_tokens, top_p, seed):
    messages = create_history_messages(history)
    messages.append({"role": "user", "content": prompt})

    if seed == 0:
        seed = random.randint(1, 100000)

    stream = client.chat.completions.create(
        messages=messages,
        model=model,
        temperature=temperature,
        max_tokens=max_tokens,
        top_p=top_p,
        seed=seed,
        stop=None,
        stream=True,
    )

    response = ""
    for chunk in stream:
        delta_content = chunk.choices[0].delta.content
        if delta_content is not None:
            response += delta_content
            yield response

    return response

# Process video function
from moviepy.editor import VideoFileClip, TextClip, CompositeVideoClip
from PIL import Image

# Adjusting MoviePy's resize function to use Image.LANCZOS directly
def process_video(text):
    video_folder = "videos"
    video_files = [os.path.join(video_folder, f) for f in os.listdir(video_folder) if f.endswith(('mp4', 'mov', 'avi', 'mkv'))]
    if not video_files:
        raise FileNotFoundError("No video files found in the specified directory.")

    selected_video = random.choice(video_files)
    video = VideoFileClip(selected_video)
    start_time = random.uniform(0, max(0, video.duration - 60))
    video = video.subclip(start_time, min(start_time + 60, video.duration))
    
    # Manually resize using PIL to avoid the issue
    def resize_image(image, new_size):
        pil_image = Image.fromarray(image)
        resized_pil = pil_image.resize(new_size[::-1], Image.LANCZOS)
        return np.array(resized_pil)
    
    new_size = (1080, int(video.h * (1080 / video.w)))
    video = video.fl_image(lambda image: resize_image(image, new_size))
    video = video.crop(x1=video.w // 2 - 540, x2=video.w // 2 + 540)

    text_lines = text.split()
    text = "\n".join([" ".join(text_lines[i:i+8]) for i in range(0, len(text_lines), 8)])
    
    text_clip = TextClip(text, fontsize=70, color='white', size=video.size, method='caption')
    text_clip = text_clip.set_position('center').set_duration(video.duration)

    final = CompositeVideoClip([video, text_clip])

    output_path = "output.mp4"
    final.write_videofile(output_path, codec="libx264")

    return output_path

# Additional inputs for the chat interface
additional_inputs = [
    gr.Dropdown(choices=["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma-7b-it"], value="llama3-70b-8192", label="Model"),
    gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Temperature", info="Controls diversity of the generated text. Lower is more deterministic, higher is more creative."),
    gr.Slider(minimum=1, maximum=32192, step=1, value=4096, label="Max Tokens", info="The maximum number of tokens that the model can process in a single response.<br>Maximums: 8k for gemma 7b, llama 7b & 70b, 32k for mixtral 8x7b."),
    gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Top P", info="A method of text generation where a model will only consider the most probable next tokens that make up the probability p."),
    gr.Number(precision=0, value=42, label="Seed", info="A starting point to initiate generation, use 0 for random")
]

# Gradio interface with blocks and tabs
# Chat Interface
def create_chat_interface():
    return gr.ChatInterface(
        fn=generate_response,
        chatbot=gr.Chatbot(
            show_label=False,
            show_share_button=False,
            show_copy_button=True,
            likeable=True,
            layout="panel"
        ),
        additional_inputs=additional_inputs,
        title="YTSHorts Maker",
        description="Powered by GROQ, MoviePy, and other tools."
    )

# Main app definition
with gr.Blocks(theme=gr.themes.Soft(primary_hue="red", secondary_hue="pink")) as demo:
    with gr.Tabs():
        # Chat Ta
        with gr.TabItem("Video Processing"):
            text_input = gr.Textbox(lines=5, label="Text (8 words max per line)")
            process_button = gr.Button("Process Video")
            video_output = gr.Video(label="Processed Video")

            process_button.click(
                fn=process_video,
                inputs=text_input,
                outputs=video_output,
            )

# Launch the Gradio interface
if __name__ == "__main__":
    demo.launch()