Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,193 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
10 |
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
top_p,
|
|
|
17 |
):
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
from huggingface_hub import InferenceClient
|
5 |
+
from datetime import datetime
|
6 |
+
import uuid
|
7 |
+
import json
|
8 |
|
9 |
+
# Configure logging
|
10 |
+
logging.basicConfig(
|
11 |
+
level=logging.INFO,
|
12 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
13 |
+
handlers=[
|
14 |
+
logging.FileHandler("chatbot_logs.log"),
|
15 |
+
logging.StreamHandler()
|
16 |
+
]
|
17 |
+
)
|
18 |
+
logger = logging.getLogger("CompanyChatbot")
|
19 |
+
|
20 |
+
# Environment variables (for production use)
|
21 |
+
HF_MODEL = os.environ.get("HF_MODEL", "HuggingFaceH4/zephyr-7b-beta")
|
22 |
+
HF_API_TOKEN = os.environ.get("HF_API_TOKEN", None) # Set your API token as env variable
|
23 |
+
COMPANY_NAME = os.environ.get("COMPANY_NAME", "Your Company")
|
24 |
+
DEFAULT_SYSTEM_PROMPT = os.environ.get("DEFAULT_SYSTEM_PROMPT",
|
25 |
+
f"You are {COMPANY_NAME}'s professional AI assistant. Be helpful, accurate, and concise.")
|
26 |
+
|
27 |
+
# Initialize the client
|
28 |
+
try:
|
29 |
+
client = InferenceClient(HF_MODEL, token=HF_API_TOKEN)
|
30 |
+
logger.info(f"Successfully initialized InferenceClient with model: {HF_MODEL}")
|
31 |
+
except Exception as e:
|
32 |
+
logger.error(f"Failed to initialize InferenceClient: {str(e)}")
|
33 |
+
raise RuntimeError(f"Failed to initialize the model. Please check your configuration: {str(e)}")
|
34 |
|
35 |
+
# Conversation tracking
|
36 |
+
def save_conversation(user_id, conversation):
|
37 |
+
filename = f"conversations/{user_id}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
|
38 |
+
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
39 |
+
with open(filename, 'w') as f:
|
40 |
+
json.dump(conversation, f)
|
41 |
+
logger.info(f"Saved conversation for user {user_id}")
|
42 |
|
43 |
+
# Main chat function
|
44 |
def respond(
|
45 |
+
message,
|
46 |
+
history: list[tuple[str, str]],
|
47 |
+
system_message,
|
48 |
+
max_tokens,
|
49 |
+
temperature,
|
50 |
top_p,
|
51 |
+
user_id
|
52 |
):
|
53 |
+
if not message.strip():
|
54 |
+
return "I'm sorry, I didn't receive any input. How can I help you today?"
|
55 |
+
|
56 |
+
# Log the incoming request
|
57 |
+
logger.info(f"User {user_id} sent message - Length: {len(message)}")
|
58 |
+
|
59 |
+
try:
|
60 |
+
messages = [{"role": "system", "content": system_message}]
|
61 |
+
|
62 |
+
# Build conversation history
|
63 |
+
for user_msg, assistant_msg in history:
|
64 |
+
if user_msg:
|
65 |
+
messages.append({"role": "user", "content": user_msg})
|
66 |
+
if assistant_msg:
|
67 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
68 |
+
|
69 |
+
messages.append({"role": "user", "content": message})
|
70 |
+
|
71 |
+
# Generate response
|
72 |
+
full_response = ""
|
73 |
+
start_time = datetime.now()
|
74 |
+
|
75 |
+
for message_chunk in client.chat_completion(
|
76 |
+
messages,
|
77 |
+
max_tokens=max_tokens,
|
78 |
+
stream=True,
|
79 |
+
temperature=temperature,
|
80 |
+
top_p=top_p,
|
81 |
+
):
|
82 |
+
token = message_chunk.choices[0].delta.content
|
83 |
+
full_response += token if token else ""
|
84 |
+
yield full_response
|
85 |
+
|
86 |
+
# Log completion
|
87 |
+
time_taken = (datetime.now() - start_time).total_seconds()
|
88 |
+
logger.info(f"Response generated for user {user_id} in {time_taken:.2f}s - Length: {len(full_response)}")
|
89 |
+
|
90 |
+
# Save conversation for audit/analytics
|
91 |
+
conversation_data = {
|
92 |
+
"timestamp": datetime.now().isoformat(),
|
93 |
+
"user_id": user_id,
|
94 |
+
"messages": messages,
|
95 |
+
"response": full_response,
|
96 |
+
"parameters": {
|
97 |
+
"max_tokens": max_tokens,
|
98 |
+
"temperature": temperature,
|
99 |
+
"top_p": top_p
|
100 |
+
},
|
101 |
+
"time_taken": time_taken
|
102 |
+
}
|
103 |
+
save_conversation(user_id, conversation_data)
|
104 |
+
|
105 |
+
except Exception as e:
|
106 |
+
error_msg = f"An error occurred: {str(e)}"
|
107 |
+
logger.error(f"Error generating response for user {user_id}: {str(e)}")
|
108 |
+
return error_msg
|
109 |
|
110 |
+
# Authentication function (replace with your actual auth system)
|
111 |
+
def authenticate(username, password):
|
112 |
+
# In production, this should check against your company's auth system
|
113 |
+
valid_credentials = {"admin": "admin123", "user": "user123"} # Example only
|
114 |
+
|
115 |
+
if username in valid_credentials and valid_credentials[username] == password:
|
116 |
+
return True, str(uuid.uuid4()) # Generate user session ID
|
117 |
+
return False, None
|
118 |
|
119 |
+
# Login interface
|
120 |
+
def login(username, password):
|
121 |
+
success, user_id = authenticate(username, password)
|
122 |
+
if success:
|
123 |
+
return gr.update(visible=False), gr.update(visible=True), user_id
|
124 |
+
else:
|
125 |
+
return gr.update(visible=True), gr.update(visible=False), None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
# Main application
|
128 |
+
with gr.Blocks(css="styles.css", title=f"{COMPANY_NAME} AI Assistant") as demo:
|
129 |
+
user_id = gr.State(None)
|
130 |
+
|
131 |
+
with gr.Row():
|
132 |
+
gr.Markdown(f"# {COMPANY_NAME} AI Assistant")
|
133 |
+
|
134 |
+
with gr.Group(visible=True) as login_group:
|
135 |
+
gr.Markdown("### Please log in to continue")
|
136 |
+
username = gr.Textbox(label="Username")
|
137 |
+
password = gr.Textbox(label="Password", type="password")
|
138 |
+
login_button = gr.Button("Login")
|
139 |
+
|
140 |
+
with gr.Group(visible=False) as chat_group:
|
141 |
+
chatbot = gr.ChatInterface(
|
142 |
+
respond,
|
143 |
+
additional_inputs=[
|
144 |
+
gr.Textbox(value=DEFAULT_SYSTEM_PROMPT, label="System Instructions"),
|
145 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Response Length"),
|
146 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature (Creativity)"),
|
147 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (Variation)"),
|
148 |
+
user_id
|
149 |
+
],
|
150 |
+
analytics_enabled=True,
|
151 |
+
title=None,
|
152 |
+
)
|
153 |
+
|
154 |
+
login_button.click(
|
155 |
+
login,
|
156 |
+
inputs=[username, password],
|
157 |
+
outputs=[login_group, chat_group, user_id]
|
158 |
+
)
|
159 |
|
160 |
+
# For CSS styling
|
161 |
+
css = """
|
162 |
+
body {
|
163 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
164 |
+
background-color: #f9f9f9;
|
165 |
+
}
|
166 |
+
.gradio-container {
|
167 |
+
max-width: 1200px !important;
|
168 |
+
margin: auto;
|
169 |
+
}
|
170 |
+
.footer {
|
171 |
+
text-align: center;
|
172 |
+
margin-top: 20px;
|
173 |
+
color: #666;
|
174 |
+
font-size: 0.8em;
|
175 |
+
}
|
176 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
+
with open("styles.css", "w") as f:
|
179 |
+
f.write(css)
|
180 |
|
181 |
if __name__ == "__main__":
|
182 |
+
# Check if we're running in production
|
183 |
+
if os.environ.get("PRODUCTION", "false").lower() == "true":
|
184 |
+
demo.launch(
|
185 |
+
server_name="0.0.0.0",
|
186 |
+
server_port=int(os.environ.get("PORT", 7860)),
|
187 |
+
share=False,
|
188 |
+
show_error=False,
|
189 |
+
auth=None, # We handle auth in the app
|
190 |
+
)
|
191 |
+
else:
|
192 |
+
# Development mode
|
193 |
+
demo.launch(share=True)
|