File size: 5,240 Bytes
2e8ccd8
 
 
 
 
23d88ae
 
 
 
 
2e8ccd8
23d88ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e8ccd8
23d88ae
2e8ccd8
23d88ae
 
 
 
 
 
 
 
 
 
 
2e8ccd8
23d88ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e8ccd8
 
23d88ae
 
 
2e8ccd8
23d88ae
 
 
 
 
 
 
 
 
 
 
 
2e8ccd8
 
 
23d88ae
2e8ccd8
23d88ae
 
 
 
 
 
 
 
 
2e8ccd8
23d88ae
2e8ccd8
23d88ae
 
 
 
 
 
 
 
 
 
 
 
2e8ccd8
 
23d88ae
2e8ccd8
23d88ae
 
2e8ccd8
23d88ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e8ccd8
23d88ae
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import gradio as gr
import json
from gradio_client import Client, handle_file

# Initialize backend client with error handling
try:
    backend = Client(os.getenv("BACKEND"), hf_token=os.getenv("TOKEN"))
except Exception as e:
    raise Exception(f"Failed to initialize backend client: {str(e)}")

def detect(image):
    """Detect deepfake content in an image with comprehensive error handling"""
    if image is None:
        raise gr.Error("Please upload an image to analyze")
    
    try:
        result_text = backend.predict(
            image=handle_file(image),
            api_name="/detect"
        )
        
        result = json.loads(result_text)
        if not result or result.get("status") != "ok":
            raise gr.Error("Analysis failed: Invalid response from backend")
            
        # Format results professionally
        overall = f"{result['overall']}% Confidence"
        aigen = f"{result['aigen']}% (AI-Generated Content Likelihood)"
        deepfake = f"{result['deepfake']}% (Face Manipulation Likelihood)"
        
        return overall, aigen, deepfake
    
    except json.JSONDecodeError:
        raise gr.Error("Error processing analysis results")
    except Exception as e:
        raise gr.Error(f"Analysis error: {str(e)}")

# Enhanced professional CSS
custom_css = """
.container {
    max-width: 1200px;
    margin: 0 auto;
    padding: 20px;
    font-family: 'Arial', sans-serif;
}
.header {
    color: #2c3e50;
    border-bottom: 2px solid #3498db;
    padding-bottom: 10px;
}
.button-gradient {
    background: linear-gradient(45deg, #3498db, #2ecc71, #9b59b6);
    background-size: 400% 400%;
    border: none;
    padding: 12px 24px;
    font-size: 16px;
    font-weight: 600;
    color: white;
    border-radius: 8px;
    cursor: pointer;
    transition: all 0.3s ease;
    animation: gradientAnimation 3s ease infinite;
    box-shadow: 0 2px 8px rgba(52, 152, 219, 0.3);
}
.button-gradient:hover {
    transform: translateY(-2px);
    box-shadow: 0 4px 12px rgba(52, 152, 219, 0.5);
}
@keyframes gradientAnimation {
    0% { background-position: 0% 50%; }
    50% { background-position: 100% 50%; }
    100% { background-position: 0% 50%; }
}
.label {
    font-weight: 600;
    color: #34495e;
    background: #f8f9fa;
    padding: 10px;
    border-radius: 5px;
    margin: 5px 0;
}
.footer {
    color: #7f8c8d;
    font-size: 14px;
    margin-top: 20px;
}
"""

# Professional content
MARKDOWN0 = """
<div class="header">
    <h1>DeepFake Detection System</h1>
    <p>Advanced AI-powered analysis for identifying manipulated media</p>
</div>
<div style="margin: 15px 0;">
    <a href="https://faceonlive.com/deepfake-detector" target="_blank" style="color: #3498db; text-decoration: none;">
        Learn About Our Technology
    </a>
</div>
"""

MARKDOWN3 = """
<div class="footer">
    <p>Additional Tools:</p>
    <div style="margin: 10px 0;">
        <a href="https://faceonlive.com/face-search-online" target="_blank" style="color: #3498db; text-decoration: none; margin-right: 15px;">
            Face Search Technology
        </a>
        <a href="https://faceonlive.com/reverse-image-search" target="_blank" style="color: #3498db; text-decoration: none;">
            Reverse Image Search
        </a>
    </div>
    <p>© 2025 FaceOnLive - All Rights Reserved</p>
</div>
"""

with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
    gr.Markdown(MARKDOWN0)
    
    with gr.Row(elem_classes="container"):
        with gr.Column(scale=1):
            image = gr.Image(
                type='filepath', 
                height=400,
                label="Upload Image for Analysis",
                interactive=True
            )
            detect_button = gr.Button(
                "Analyze Image", 
                elem_classes="button-gradient"
            )
            gr.Examples(
                examples=['examples 1.jpg', 'examples 2.jpg'],
                inputs=image,
                outputs=['overall', 'aigen', 'deepfake'],
                fn=detect,
                cache_examples=True
            )
            
        with gr.Column(scale=2):
            overall = gr.Label(label="Confidence Score", elem_classes="label")
            with gr.Row():
                aigen = gr.Label(label="AI-Generated Content", elem_classes="label")
                deepfake = gr.Label(label="Face Manipulation", elem_classes="label")
    
    gr.Markdown(MARKDOWN3)
    
    # Visitor badge
    gr.HTML("""
        <div style="margin-top: 20px;">
            <a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FFaceOnLive%2FDeep-Fake-Detector">
                <img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FFaceOnLive%2FDeep-Fake-Detector&labelColor=%233495db&countColor=%232ecc71&style=flat" />
            </a>
        </div>
    """)
    
    detect_button.click(
        fn=detect,
        inputs=[image],
        outputs=[overall, aigen, deepfake],
        _js="() => {return [document.querySelector('input[type=file]').files[0]]}"
    )

demo.queue(api_open=False, concurrency_count=8).launch(
    server_name="0.0.0.0",
    show_api=False,
    debug=True
)