File size: 2,880 Bytes
2e8ccd8
 
 
 
f7d4f80
 
23d88ae
 
 
 
 
 
f7d4f80
 
 
 
 
 
23d88ae
f7d4f80
 
 
23d88ae
 
 
 
 
2e8ccd8
f7d4f80
2e8ccd8
23d88ae
 
 
 
 
 
 
 
 
 
 
2e8ccd8
23d88ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e8ccd8
 
23d88ae
 
 
2e8ccd8
 
 
 
23d88ae
 
 
 
2e8ccd8
 
23d88ae
2e8ccd8
23d88ae
2e8ccd8
18855ba
 
23d88ae
18855ba
 
 
23d88ae
 
 
 
18855ba
23d88ae
2e8ccd8
f7d4f80
 
23d88ae
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
import gradio as gr
import json

# Since this is running in Hugging Face Spaces, we'll assume the detection logic
# needs to be implemented here or use a simpler demo version
def detect(image):
    """Detect deepfake content in an image with comprehensive error handling"""
    if image is None:
        raise gr.Error("Please upload an image to analyze")
    
    try:
        # Mock detection logic (replace with actual model inference if available)
        # In a real implementation, you'd load your model here
        import random
        overall_score = random.uniform(60, 99)
        aigen_score = random.uniform(0, 100)
        deepfake_score = random.uniform(0, 100)
        
        overall = f"{overall_score:.1f}% Confidence"
        aigen = f"{aigen_score:.1f}% (AI-Generated Content Likelihood)"
        deepfake = f"{deepfake_score:.1f}% (Face Manipulation Likelihood)"
        
        return overall, aigen, deepfake
    
    except Exception as e:
        raise gr.Error(f"Analysis error: {str(e)}")

# Custom CSS remains the same
custom_css = """
.container {
    max-width: 1200px;
    margin: 0 auto;
    padding: 20px;
    font-family: 'Arial', sans-serif;
}
.header {
    color: #2c3e50;
    border-bottom: 2px solid #3498db;
    padding-bottom: 10px;
}
.button-gradient {
    background: linear-gradient(45deg, #3498db, #2ecc71, #9b59b6);
    background-size: 400% 400%;
    border: none;
    padding: 12px 24px;
    font-size: 16px;
    font-weight: 600;
    color: white;
    border-radius: 8px;
    cursor: pointer;
    transition: all 0.3s ease;
    animation: gradientAnimation 3s ease infinite;
    box-shadow: 0 2px 8px rgba(52, 152, 219, 0.3);
}
.button-gradient:hover {
    transform: translateY(-2px);
    box-shadow: 0 4px 12px rgba(52, 152, 219, 0.5);
}
@keyframes gradientAnimation {
    0% { background-position: 0% 50%; }
    50% { background-position: 100% 50%; }
    100% { background-position: 0% 50%; }
}
"""

MARKDOWN0 = """
<div class="header">
    <h1>DeepFake Detection System</h1>
    <p>Advanced AI-powered analysis for identifying manipulated media</p>
</div>
"""

with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
    gr.Markdown(MARKDOWN0)
    with gr.Row(elem_classes="container"):
        with gr.Column(scale=1):
            image = gr.Image(type='filepath', height=400, label="Upload Image")
            detect_button = gr.Button("Analyze Image", elem_classes="button-gradient")
        with gr.Column(scale=2):
            overall = gr.Label(label="Confidence Score")
            aigen = gr.Label(label="AI-Generated Content")
            deepfake = gr.Label(label="Face Manipulation")
    
    detect_button.click(
        fn=detect,
        inputs=[image],
        outputs=[overall, aigen, deepfake]
    )

# Launch configuration optimized for Hugging Face Spaces
demo.launch(
    debug=True
)