Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -19,7 +19,7 @@ def wait_for_element(driver, locator):
|
|
19 |
return WebDriverWait(driver, 10).until(EC.element_to_be_clickable(locator))
|
20 |
|
21 |
def select_date_month_day(driver, date_str, date_input_id):
|
22 |
-
date_to_select = datetime.strptime(date_str, '%Y
|
23 |
date_input = WebDriverWait(driver, 10).until(EC.element_to_be_clickable((By.ID, date_input_id)))
|
24 |
date_input.click()
|
25 |
month_select = WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.CLASS_NAME, 'ui-datepicker-month')))
|
@@ -287,7 +287,7 @@ def scrape_data(url, user_id, password):
|
|
287 |
|
288 |
|
289 |
# --- Plotting Functions ---
|
290 |
-
def generate_dashboard_charts(patient_data_by_year, claim_data_by_year, mc_data_by_year, year, show_mc_pct=True):
|
291 |
if not patient_data_by_year or not claim_data_by_year or not mc_data_by_year:
|
292 |
return None, None
|
293 |
|
@@ -300,12 +300,13 @@ def generate_dashboard_charts(patient_data_by_year, claim_data_by_year, mc_data_
|
|
300 |
return None, None
|
301 |
|
302 |
# Professional styling
|
303 |
-
sns.set(style="whitegrid", palette="
|
304 |
plt.rcParams.update({
|
305 |
-
'font.family': '
|
306 |
-
'axes.labelsize':
|
307 |
-
'axes.titleweight': 'bold', 'axes.linewidth': 1.
|
308 |
-
'grid.alpha': 0.
|
|
|
309 |
})
|
310 |
|
311 |
provider_charts = []
|
@@ -315,12 +316,12 @@ def generate_dashboard_charts(patient_data_by_year, claim_data_by_year, mc_data_
|
|
315 |
# 1. Total Visits by Providers (Horizontal Bar)
|
316 |
plt.figure(figsize=(12, 6))
|
317 |
top_prov_visits = mc_df.sort_values('No. of Visit', ascending=False).head(10)
|
318 |
-
sns.barplot(data=top_prov_visits, x='No. of Visit', y='Provider', hue='Provider', palette='
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
for i, v in enumerate(top_prov_visits['No. of Visit']):
|
323 |
-
|
324 |
plt.tight_layout()
|
325 |
provider_charts.append(plt.gcf())
|
326 |
plt.close()
|
@@ -328,30 +329,32 @@ def generate_dashboard_charts(patient_data_by_year, claim_data_by_year, mc_data_
|
|
328 |
# 2. Total MC by Providers (Horizontal Bar)
|
329 |
plt.figure(figsize=(12, 6))
|
330 |
top_prov_mc = mc_df.sort_values('Total MC Given', ascending=False).head(10)
|
331 |
-
sns.barplot(data=top_prov_mc, x='Total MC Given', y='Provider', hue='Provider', palette='
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
for i, v in enumerate(top_prov_mc['Total MC Given']):
|
336 |
-
|
337 |
plt.tight_layout()
|
338 |
provider_charts.append(plt.gcf())
|
339 |
plt.close()
|
340 |
|
341 |
-
# 3. % MC Given by Providers (Bar
|
342 |
if show_mc_pct:
|
343 |
-
plt.figure(figsize=(
|
344 |
top_visits_provs = set(mc_df.sort_values('No. of Visit', ascending=False).head(10)['Provider'])
|
345 |
top_mc_provs = set(mc_df.sort_values('Total MC Given', ascending=False).head(10)['Provider'])
|
346 |
top_provs = top_visits_provs.union(top_mc_provs)
|
347 |
-
top_prov_mc_pct = mc_df[mc_df['Provider'].isin(top_provs)].sort_values(
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
|
|
|
|
353 |
for i, v in enumerate(top_prov_mc_pct['% MC Given']):
|
354 |
-
|
355 |
plt.tight_layout()
|
356 |
provider_charts.append(plt.gcf())
|
357 |
else:
|
@@ -361,12 +364,13 @@ def generate_dashboard_charts(patient_data_by_year, claim_data_by_year, mc_data_
|
|
361 |
# 4. Total Claim by Providers (Horizontal Bar)
|
362 |
plt.figure(figsize=(12, 6))
|
363 |
top_prov_claim = claim_df.sort_values('Total Claim', ascending=False).head(10)
|
364 |
-
sns.barplot(data=top_prov_claim, x='Total Claim', y='Provider Name', hue='Provider Name',
|
365 |
-
|
366 |
-
|
367 |
-
|
|
|
368 |
for i, v in enumerate(top_prov_claim['Total Claim']):
|
369 |
-
|
370 |
plt.tight_layout()
|
371 |
provider_charts.append(plt.gcf())
|
372 |
plt.close()
|
@@ -374,37 +378,29 @@ def generate_dashboard_charts(patient_data_by_year, claim_data_by_year, mc_data_
|
|
374 |
# 5. Average Claim per Visit by Providers (Bar)
|
375 |
plt.figure(figsize=(12, 6))
|
376 |
top_prov_avg_claim = claim_df.sort_values('Avg Claim per Visit', ascending=False).head(10)
|
377 |
-
sns.barplot(data=top_prov_avg_claim, x='Provider Name', y='Avg Claim per Visit', hue='Provider Name',
|
378 |
-
|
379 |
-
|
380 |
-
|
|
|
381 |
plt.xticks(rotation=45, ha='right')
|
382 |
for i, v in enumerate(top_prov_avg_claim['Avg Claim per Visit']):
|
383 |
-
|
384 |
-
plt.tight_layout()
|
385 |
-
provider_charts.append(plt.gcf())
|
386 |
-
plt.close()
|
387 |
-
|
388 |
-
# 6. Insight: MC vs Claim Correlation (Scatter)
|
389 |
-
plt.figure(figsize=(12, 6))
|
390 |
-
sns.scatterplot(data=claim_df, x='Total MC (Days)', y='Total Claim', size='No of Visits', hue='Provider Name', palette='viridis', legend=False)
|
391 |
-
plt.title(f'MC vs Claim Correlation by Provider ({year})')
|
392 |
-
plt.xlabel('Total MC (Days)')
|
393 |
-
plt.ylabel('Total Claim ($)')
|
394 |
plt.tight_layout()
|
395 |
provider_charts.append(plt.gcf())
|
396 |
plt.close()
|
397 |
|
398 |
-
# --- Employee Dashboard Charts
|
399 |
# 1. Total Visits by Employees
|
400 |
plt.figure(figsize=(12, 6))
|
401 |
top_emp_visits = patient_df.sort_values('Total Visit', ascending=False).head(10)
|
402 |
-
sns.barplot(data=top_emp_visits, x='Total Visit', y='Employee Name', hue='Employee Name',
|
403 |
-
|
404 |
-
|
405 |
-
|
|
|
406 |
for i, v in enumerate(top_emp_visits['Total Visit']):
|
407 |
-
|
408 |
plt.tight_layout()
|
409 |
employee_charts.append(plt.gcf())
|
410 |
plt.close()
|
@@ -412,12 +408,13 @@ def generate_dashboard_charts(patient_data_by_year, claim_data_by_year, mc_data_
|
|
412 |
# 2. Total Claim by Employees
|
413 |
plt.figure(figsize=(12, 6))
|
414 |
top_emp_claim = patient_df.sort_values('Total Claim (Combined)', ascending=False).head(10)
|
415 |
-
sns.barplot(data=top_emp_claim, x='Total Claim (Combined)', y='Employee Name', hue='Employee Name',
|
416 |
-
|
417 |
-
|
418 |
-
|
|
|
419 |
for i, v in enumerate(top_emp_claim['Total Claim (Combined)']):
|
420 |
-
|
421 |
plt.tight_layout()
|
422 |
employee_charts.append(plt.gcf())
|
423 |
plt.close()
|
@@ -425,13 +422,14 @@ def generate_dashboard_charts(patient_data_by_year, claim_data_by_year, mc_data_
|
|
425 |
# 3. Average Claim per Visit by Employees
|
426 |
plt.figure(figsize=(12, 6))
|
427 |
top_emp_avg_claim = patient_df.sort_values('Avg Claim per Visit', ascending=False).head(10)
|
428 |
-
sns.barplot(data=top_emp_avg_claim, x='Employee Name', y='Avg Claim per Visit', hue='Employee Name',
|
429 |
-
|
430 |
-
|
431 |
-
|
|
|
432 |
plt.xticks(rotation=45, ha='right')
|
433 |
for i, v in enumerate(top_emp_avg_claim['Avg Claim per Visit']):
|
434 |
-
|
435 |
plt.tight_layout()
|
436 |
employee_charts.append(plt.gcf())
|
437 |
plt.close()
|
@@ -439,12 +437,13 @@ def generate_dashboard_charts(patient_data_by_year, claim_data_by_year, mc_data_
|
|
439 |
# 4. Total MC by Employees
|
440 |
plt.figure(figsize=(12, 6))
|
441 |
top_emp_mc = patient_df.sort_values('Total MC (Days)', ascending=False).head(10)
|
442 |
-
sns.barplot(data=top_emp_mc, x='Total MC (Days)', y='Employee Name', hue='Employee Name',
|
443 |
-
|
444 |
-
|
445 |
-
|
|
|
446 |
for i, v in enumerate(top_emp_mc['Total MC (Days)']):
|
447 |
-
|
448 |
plt.tight_layout()
|
449 |
employee_charts.append(plt.gcf())
|
450 |
plt.close()
|
@@ -452,36 +451,24 @@ def generate_dashboard_charts(patient_data_by_year, claim_data_by_year, mc_data_
|
|
452 |
# 5. Average MC per Visit by Employees
|
453 |
plt.figure(figsize=(12, 6))
|
454 |
top_emp_avg_mc = patient_df.sort_values('Avg MC per Visit', ascending=False).head(10)
|
455 |
-
sns.barplot(data=top_emp_avg_mc, x='Employee Name', y='Avg MC per Visit', hue='Employee Name',
|
456 |
-
|
457 |
-
|
458 |
-
|
|
|
459 |
plt.xticks(rotation=45, ha='right')
|
460 |
for i, v in enumerate(top_emp_avg_mc['Avg MC per Visit']):
|
461 |
-
|
462 |
-
plt.tight_layout()
|
463 |
-
employee_charts.append(plt.gcf())
|
464 |
-
plt.close()
|
465 |
-
|
466 |
-
# 6. Average Claim per MC by Employees
|
467 |
-
plt.figure(figsize=(12, 6))
|
468 |
-
top_emp_avg_claim_mc = patient_df.sort_values('Avg Claim per MC', ascending=False).head(10)
|
469 |
-
sns.barplot(data=top_emp_avg_claim_mc, x='Employee Name', y='Avg Claim per MC', hue='Employee Name', palette='YlOrBr', legend=False)
|
470 |
-
plt.title(f'Top 10 Employees by Avg Claim per MC ({year})')
|
471 |
-
plt.ylabel('Avg Claim per MC ($)')
|
472 |
-
plt.xlabel('Employee')
|
473 |
-
plt.xticks(rotation=45, ha='right')
|
474 |
-
for i, v in enumerate(top_emp_avg_claim_mc['Avg Claim per MC']):
|
475 |
-
plt.text(i, v + 0.5, f'{v:.2f}', ha='center', fontsize=10, color='black')
|
476 |
plt.tight_layout()
|
477 |
employee_charts.append(plt.gcf())
|
478 |
plt.close()
|
479 |
|
480 |
-
#
|
481 |
plt.figure(figsize=(10, 6))
|
482 |
division_claims = patient_df.groupby('Division/Department')['Total Claim (Combined)'].sum()
|
483 |
-
plt.pie(division_claims, labels=division_claims.index, autopct='%1.1f%%', colors=sns.color_palette('
|
484 |
-
|
|
|
485 |
plt.tight_layout()
|
486 |
employee_charts.append(plt.gcf())
|
487 |
plt.close()
|
@@ -500,14 +487,17 @@ def fig_to_image(fig):
|
|
500 |
return img_array
|
501 |
|
502 |
# --- Gradio Interface ---
|
503 |
-
with gr.Blocks(title="Claims Analysis Dashboard"
|
|
|
|
|
|
|
504 |
gr.Markdown("# Claims Analysis Dashboard (2024 - Present)")
|
505 |
|
506 |
with gr.Row():
|
507 |
-
url_input = gr.Textbox(label="Website URL")
|
508 |
-
user_id_input = gr.Textbox(label="User ID")
|
509 |
-
password_input = gr.Textbox(label="Password", type="password")
|
510 |
-
scrape_btn = gr.Button("
|
511 |
|
512 |
with gr.Row():
|
513 |
year_dropdown = gr.Dropdown(
|
@@ -517,8 +507,14 @@ with gr.Blocks(title="Claims Analysis Dashboard") as demo:
|
|
517 |
allow_custom_value=False
|
518 |
)
|
519 |
show_mc_pct_checkbox = gr.Checkbox(label="Show % MC Given Chart", value=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
520 |
|
521 |
-
status_output = gr.Textbox(label="Status")
|
522 |
patient_state = gr.State()
|
523 |
claim_state = gr.State()
|
524 |
mc_state = gr.State()
|
@@ -530,11 +526,10 @@ with gr.Blocks(title="Claims Analysis Dashboard") as demo:
|
|
530 |
prov_chart1 = gr.Image(label="Total Visits by Providers", interactive=False)
|
531 |
prov_chart2 = gr.Image(label="Total MC by Providers", interactive=False)
|
532 |
with gr.Row():
|
533 |
-
prov_chart3 = gr.Image(label="% MC Given by Providers", interactive=False, visible=True)
|
534 |
-
prov_chart4 = gr.Image(label="Total Claim by Providers", interactive=False)
|
535 |
with gr.Row():
|
|
|
536 |
prov_chart5 = gr.Image(label="Average Claim per Visit by Providers", interactive=False)
|
537 |
-
prov_chart6 = gr.Image(label="MC vs Claim Correlation", interactive=False)
|
538 |
|
539 |
with gr.TabItem("Employee Insights"):
|
540 |
gr.Markdown("## Employee Insights Dashboard")
|
@@ -546,57 +541,67 @@ with gr.Blocks(title="Claims Analysis Dashboard") as demo:
|
|
546 |
emp_chart4 = gr.Image(label="Total MC by Employees", interactive=False)
|
547 |
with gr.Row():
|
548 |
emp_chart5 = gr.Image(label="Average MC per Visit by Employees", interactive=False)
|
549 |
-
emp_chart6 = gr.Image(label="
|
550 |
-
with gr.Row():
|
551 |
-
emp_chart7 = gr.Image(label="Claim Distribution by Division", interactive=False)
|
552 |
|
553 |
-
|
|
|
554 |
patient_data_by_year, claim_data_by_year, mc_data_by_year, status = scrape_data(url, user_id, password)
|
555 |
if patient_data_by_year is None or claim_data_by_year is None or mc_data_by_year is None:
|
556 |
return status, None, None, None
|
557 |
|
558 |
-
provider_images, employee_images = generate_dashboard_charts(
|
|
|
559 |
return (
|
560 |
status, patient_data_by_year, claim_data_by_year, mc_data_by_year,
|
561 |
-
provider_images[0], provider_images[1], provider_images[2], provider_images[3], provider_images[4],
|
562 |
-
employee_images[0], employee_images[1], employee_images[2], employee_images[3], employee_images[4], employee_images[5]
|
563 |
)
|
564 |
|
565 |
-
def update_dashboard(year, patient_data_by_year, claim_data_by_year, mc_data_by_year, show_mc_pct):
|
566 |
if not patient_data_by_year or not claim_data_by_year or not mc_data_by_year:
|
567 |
-
return [None] *
|
568 |
-
provider_images, employee_images = generate_dashboard_charts(
|
|
|
569 |
return (
|
570 |
-
provider_images[0], provider_images[1], provider_images[2], provider_images[3], provider_images[4],
|
571 |
-
employee_images[0], employee_images[1], employee_images[2], employee_images[3], employee_images[4], employee_images[5]
|
572 |
)
|
573 |
|
574 |
scrape_btn.click(
|
575 |
-
fn=lambda url, user_id, password: scrape_and_store(url, user_id, password, show_mc_pct_checkbox.value),
|
576 |
inputs=[url_input, user_id_input, password_input],
|
577 |
outputs=[
|
578 |
status_output, patient_state, claim_state, mc_state,
|
579 |
-
prov_chart1, prov_chart2, prov_chart3, prov_chart4, prov_chart5,
|
580 |
-
emp_chart1, emp_chart2, emp_chart3, emp_chart4, emp_chart5, emp_chart6
|
581 |
]
|
582 |
)
|
583 |
|
584 |
year_dropdown.change(
|
585 |
fn=update_dashboard,
|
586 |
-
inputs=[year_dropdown, patient_state, claim_state, mc_state, show_mc_pct_checkbox],
|
587 |
outputs=[
|
588 |
-
prov_chart1, prov_chart2, prov_chart3, prov_chart4, prov_chart5,
|
589 |
-
emp_chart1, emp_chart2, emp_chart3, emp_chart4, emp_chart5, emp_chart6
|
590 |
]
|
591 |
)
|
592 |
|
593 |
show_mc_pct_checkbox.change(
|
594 |
fn=update_dashboard,
|
595 |
-
inputs=[year_dropdown, patient_state, claim_state, mc_state, show_mc_pct_checkbox],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
596 |
outputs=[
|
597 |
-
prov_chart1, prov_chart2, prov_chart3, prov_chart4, prov_chart5,
|
598 |
-
emp_chart1, emp_chart2, emp_chart3, emp_chart4, emp_chart5, emp_chart6
|
599 |
]
|
600 |
)
|
601 |
|
602 |
-
demo.launch()
|
|
|
19 |
return WebDriverWait(driver, 10).until(EC.element_to_be_clickable(locator))
|
20 |
|
21 |
def select_date_month_day(driver, date_str, date_input_id):
|
22 |
+
date_to_select = datetime.strptime(date_str, '%Y-%m-%d')
|
23 |
date_input = WebDriverWait(driver, 10).until(EC.element_to_be_clickable((By.ID, date_input_id)))
|
24 |
date_input.click()
|
25 |
month_select = WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.CLASS_NAME, 'ui-datepicker-month')))
|
|
|
287 |
|
288 |
|
289 |
# --- Plotting Functions ---
|
290 |
+
def generate_dashboard_charts(patient_data_by_year, claim_data_by_year, mc_data_by_year, year, show_mc_pct=True, mc_sort_order="desc"):
|
291 |
if not patient_data_by_year or not claim_data_by_year or not mc_data_by_year:
|
292 |
return None, None
|
293 |
|
|
|
300 |
return None, None
|
301 |
|
302 |
# Professional styling
|
303 |
+
sns.set(style="whitegrid", palette="muted")
|
304 |
plt.rcParams.update({
|
305 |
+
'font.family': 'Helvetica', 'font.size': 12, 'axes.titlesize': 16,
|
306 |
+
'axes.labelsize': 14, 'xtick.labelsize': 11, 'ytick.labelsize': 11,
|
307 |
+
'axes.titleweight': 'bold', 'axes.linewidth': 1.5, 'grid.linestyle': ':',
|
308 |
+
'grid.alpha': 0.5, 'figure.facecolor': '#f5f6f5', 'axes.facecolor': '#ffffff',
|
309 |
+
'axes.edgecolor': '#333333', 'axes.labelcolor': '#333333', 'text.color': '#333333'
|
310 |
})
|
311 |
|
312 |
provider_charts = []
|
|
|
316 |
# 1. Total Visits by Providers (Horizontal Bar)
|
317 |
plt.figure(figsize=(12, 6))
|
318 |
top_prov_visits = mc_df.sort_values('No. of Visit', ascending=False).head(10)
|
319 |
+
ax = sns.barplot(data=top_prov_visits, x='No. of Visit', y='Provider', hue='Provider', palette='Blues_r', legend=False, edgecolor='black', linewidth=0.5)
|
320 |
+
ax.set_title(f'Top 10 Providers by Total Visits ({year})', pad=15)
|
321 |
+
ax.set_xlabel('Total Visits')
|
322 |
+
ax.set_ylabel('Provider')
|
323 |
for i, v in enumerate(top_prov_visits['No. of Visit']):
|
324 |
+
ax.text(v + 0.5, i, f'{int(v)}', va='center', fontsize=10, color='#333333')
|
325 |
plt.tight_layout()
|
326 |
provider_charts.append(plt.gcf())
|
327 |
plt.close()
|
|
|
329 |
# 2. Total MC by Providers (Horizontal Bar)
|
330 |
plt.figure(figsize=(12, 6))
|
331 |
top_prov_mc = mc_df.sort_values('Total MC Given', ascending=False).head(10)
|
332 |
+
ax = sns.barplot(data=top_prov_mc, x='Total MC Given', y='Provider', hue='Provider', palette='Greens_r', legend=False, edgecolor='black', linewidth=0.5)
|
333 |
+
ax.set_title(f'Top 10 Providers by Total MC Given ({year})', pad=15)
|
334 |
+
ax.set_xlabel('Total MC (Days)')
|
335 |
+
ax.set_ylabel('Provider')
|
336 |
for i, v in enumerate(top_prov_mc['Total MC Given']):
|
337 |
+
ax.text(v + 0.5, i, f'{int(v)}', va='center', fontsize=10, color='#333333')
|
338 |
plt.tight_layout()
|
339 |
provider_charts.append(plt.gcf())
|
340 |
plt.close()
|
341 |
|
342 |
+
# 3. % MC Given by Providers (Larger Bar, Top 20, Sortable)
|
343 |
if show_mc_pct:
|
344 |
+
plt.figure(figsize=(18, 9)) # Larger size for professionalism and readability
|
345 |
top_visits_provs = set(mc_df.sort_values('No. of Visit', ascending=False).head(10)['Provider'])
|
346 |
top_mc_provs = set(mc_df.sort_values('Total MC Given', ascending=False).head(10)['Provider'])
|
347 |
top_provs = top_visits_provs.union(top_mc_provs)
|
348 |
+
top_prov_mc_pct = mc_df[mc_df['Provider'].isin(top_provs)].sort_values(
|
349 |
+
'% MC Given', ascending=(mc_sort_order == "asc")).head(20)
|
350 |
+
ax = sns.barplot(data=top_prov_mc_pct, x='Provider', y='% MC Given', hue='Provider',
|
351 |
+
palette='Purples_r', legend=False, edgecolor='black', linewidth=0.5)
|
352 |
+
ax.set_title(f'Top 20 Providers by % MC Given ({year}) - Sorted {"Ascending" if mc_sort_order == "asc" else "Descending"}', pad=15)
|
353 |
+
ax.set_ylabel('% MC Given', fontsize=14)
|
354 |
+
ax.set_xlabel('Provider', fontsize=14)
|
355 |
+
plt.xticks(rotation=45, ha='right', fontsize=11)
|
356 |
for i, v in enumerate(top_prov_mc_pct['% MC Given']):
|
357 |
+
ax.text(i, v + 1, f'{v:.1f}%', ha='center', fontsize=10, color='#333333')
|
358 |
plt.tight_layout()
|
359 |
provider_charts.append(plt.gcf())
|
360 |
else:
|
|
|
364 |
# 4. Total Claim by Providers (Horizontal Bar)
|
365 |
plt.figure(figsize=(12, 6))
|
366 |
top_prov_claim = claim_df.sort_values('Total Claim', ascending=False).head(10)
|
367 |
+
ax = sns.barplot(data=top_prov_claim, x='Total Claim', y='Provider Name', hue='Provider Name',
|
368 |
+
palette='Oranges_r', legend=False, edgecolor='black', linewidth=0.5)
|
369 |
+
ax.set_title(f'Top 10 Providers by Total Claim ({year})', pad=15)
|
370 |
+
ax.set_xlabel('Total Claim ($)')
|
371 |
+
ax.set_ylabel('Provider')
|
372 |
for i, v in enumerate(top_prov_claim['Total Claim']):
|
373 |
+
ax.text(v + 0.5, i, f'{v:,.2f}', va='center', fontsize=10, color='#333333')
|
374 |
plt.tight_layout()
|
375 |
provider_charts.append(plt.gcf())
|
376 |
plt.close()
|
|
|
378 |
# 5. Average Claim per Visit by Providers (Bar)
|
379 |
plt.figure(figsize=(12, 6))
|
380 |
top_prov_avg_claim = claim_df.sort_values('Avg Claim per Visit', ascending=False).head(10)
|
381 |
+
ax = sns.barplot(data=top_prov_avg_claim, x='Provider Name', y='Avg Claim per Visit', hue='Provider Name',
|
382 |
+
palette='Reds_r', legend=False, edgecolor='black', linewidth=0.5)
|
383 |
+
ax.set_title(f'Top 10 Providers by Avg Claim per Visit ({year})', pad=15)
|
384 |
+
ax.set_ylabel('Avg Claim per Visit ($)')
|
385 |
+
ax.set_xlabel('Provider')
|
386 |
plt.xticks(rotation=45, ha='right')
|
387 |
for i, v in enumerate(top_prov_avg_claim['Avg Claim per Visit']):
|
388 |
+
ax.text(i, v + 0.5, f'{v:.2f}', ha='center', fontsize=10, color='#333333')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
plt.tight_layout()
|
390 |
provider_charts.append(plt.gcf())
|
391 |
plt.close()
|
392 |
|
393 |
+
# --- Employee Dashboard Charts ---
|
394 |
# 1. Total Visits by Employees
|
395 |
plt.figure(figsize=(12, 6))
|
396 |
top_emp_visits = patient_df.sort_values('Total Visit', ascending=False).head(10)
|
397 |
+
ax = sns.barplot(data=top_emp_visits, x='Total Visit', y='Employee Name', hue='Employee Name',
|
398 |
+
palette='Blues_r', legend=False, edgecolor='black', linewidth=0.5)
|
399 |
+
ax.set_title(f'Top 10 Employees by Total Visits ({year})', pad=15)
|
400 |
+
ax.set_xlabel('Total Visits')
|
401 |
+
ax.set_ylabel('Employee')
|
402 |
for i, v in enumerate(top_emp_visits['Total Visit']):
|
403 |
+
ax.text(v + 0.2, i, f'{int(v)}', va='center', fontsize=10, color='#333333')
|
404 |
plt.tight_layout()
|
405 |
employee_charts.append(plt.gcf())
|
406 |
plt.close()
|
|
|
408 |
# 2. Total Claim by Employees
|
409 |
plt.figure(figsize=(12, 6))
|
410 |
top_emp_claim = patient_df.sort_values('Total Claim (Combined)', ascending=False).head(10)
|
411 |
+
ax = sns.barplot(data=top_emp_claim, x='Total Claim (Combined)', y='Employee Name', hue='Employee Name',
|
412 |
+
palette='Oranges_r', legend=False, edgecolor='black', linewidth=0.5)
|
413 |
+
ax.set_title(f'Top 10 Employees by Total Claim ({year})', pad=15)
|
414 |
+
ax.set_xlabel('Total Claim ($)')
|
415 |
+
ax.set_ylabel('Employee')
|
416 |
for i, v in enumerate(top_emp_claim['Total Claim (Combined)']):
|
417 |
+
ax.text(v + 1, i, f'{v:,.2f}', va='center', fontsize=10, color='#333333')
|
418 |
plt.tight_layout()
|
419 |
employee_charts.append(plt.gcf())
|
420 |
plt.close()
|
|
|
422 |
# 3. Average Claim per Visit by Employees
|
423 |
plt.figure(figsize=(12, 6))
|
424 |
top_emp_avg_claim = patient_df.sort_values('Avg Claim per Visit', ascending=False).head(10)
|
425 |
+
ax = sns.barplot(data=top_emp_avg_claim, x='Employee Name', y='Avg Claim per Visit', hue='Employee Name',
|
426 |
+
palette='Reds_r', legend=False, edgecolor='black', linewidth=0.5)
|
427 |
+
ax.set_title(f'Top 10 Employees by Avg Claim per Visit ({year})', pad=15)
|
428 |
+
ax.set_ylabel('Avg Claim per Visit ($)')
|
429 |
+
ax.set_xlabel('Employee')
|
430 |
plt.xticks(rotation=45, ha='right')
|
431 |
for i, v in enumerate(top_emp_avg_claim['Avg Claim per Visit']):
|
432 |
+
ax.text(i, v + 0.5, f'{v:.2f}', ha='center', fontsize=10, color='#333333')
|
433 |
plt.tight_layout()
|
434 |
employee_charts.append(plt.gcf())
|
435 |
plt.close()
|
|
|
437 |
# 4. Total MC by Employees
|
438 |
plt.figure(figsize=(12, 6))
|
439 |
top_emp_mc = patient_df.sort_values('Total MC (Days)', ascending=False).head(10)
|
440 |
+
ax = sns.barplot(data=top_emp_mc, x='Total MC (Days)', y='Employee Name', hue='Employee Name',
|
441 |
+
palette='Greens_r', legend=False, edgecolor='black', linewidth=0.5)
|
442 |
+
ax.set_title(f'Top 10 Employees by Total MC ({year})', pad=15)
|
443 |
+
ax.set_xlabel('Total MC (Days)')
|
444 |
+
ax.set_ylabel('Employee')
|
445 |
for i, v in enumerate(top_emp_mc['Total MC (Days)']):
|
446 |
+
ax.text(v + 0.2, i, f'{int(v)}', va='center', fontsize=10, color='#333333')
|
447 |
plt.tight_layout()
|
448 |
employee_charts.append(plt.gcf())
|
449 |
plt.close()
|
|
|
451 |
# 5. Average MC per Visit by Employees
|
452 |
plt.figure(figsize=(12, 6))
|
453 |
top_emp_avg_mc = patient_df.sort_values('Avg MC per Visit', ascending=False).head(10)
|
454 |
+
ax = sns.barplot(data=top_emp_avg_mc, x='Employee Name', y='Avg MC per Visit', hue='Employee Name',
|
455 |
+
palette='Purples_r', legend=False, edgecolor='black', linewidth=0.5)
|
456 |
+
ax.set_title(f'Top 10 Employees by Avg MC per Visit ({year})', pad=15)
|
457 |
+
ax.set_ylabel('Avg MC per Visit (Days)')
|
458 |
+
ax.set_xlabel('Employee')
|
459 |
plt.xticks(rotation=45, ha='right')
|
460 |
for i, v in enumerate(top_emp_avg_mc['Avg MC per Visit']):
|
461 |
+
ax.text(i, v + 0.05, f'{v:.2f}', ha='center', fontsize=10, color='#333333')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
462 |
plt.tight_layout()
|
463 |
employee_charts.append(plt.gcf())
|
464 |
plt.close()
|
465 |
|
466 |
+
# 6. Division-wise Claim Distribution (Pie)
|
467 |
plt.figure(figsize=(10, 6))
|
468 |
division_claims = patient_df.groupby('Division/Department')['Total Claim (Combined)'].sum()
|
469 |
+
plt.pie(division_claims, labels=division_claims.index, autopct='%1.1f%%', colors=sns.color_palette('muted'),
|
470 |
+
startangle=90, textprops={'fontsize': 11, 'color': '#333333'}, wedgeprops={'edgecolor': 'black', 'linewidth': 0.5})
|
471 |
+
plt.title(f'Claim Distribution by Division ({year})', pad=15)
|
472 |
plt.tight_layout()
|
473 |
employee_charts.append(plt.gcf())
|
474 |
plt.close()
|
|
|
487 |
return img_array
|
488 |
|
489 |
# --- Gradio Interface ---
|
490 |
+
with gr.Blocks(title="Claims Analysis Dashboard", css="""
|
491 |
+
body { background-color: #f5f6f5; }
|
492 |
+
h1, h2 { color: #333333; font-family: Helvetica; }
|
493 |
+
""") as demo:
|
494 |
gr.Markdown("# Claims Analysis Dashboard (2024 - Present)")
|
495 |
|
496 |
with gr.Row():
|
497 |
+
url_input = gr.Textbox(label="Website URL", placeholder="Enter URL here", lines=1)
|
498 |
+
user_id_input = gr.Textbox(label="User ID", placeholder="Enter User ID", lines=1)
|
499 |
+
password_input = gr.Textbox(label="Password", type="password", placeholder="Enter Password", lines=1)
|
500 |
+
scrape_btn = gr.Button("Submit", variant="primary")
|
501 |
|
502 |
with gr.Row():
|
503 |
year_dropdown = gr.Dropdown(
|
|
|
507 |
allow_custom_value=False
|
508 |
)
|
509 |
show_mc_pct_checkbox = gr.Checkbox(label="Show % MC Given Chart", value=True)
|
510 |
+
mc_sort_dropdown = gr.Dropdown(
|
511 |
+
label="Sort % MC Given",
|
512 |
+
choices=["desc", "asc"],
|
513 |
+
value="desc",
|
514 |
+
allow_custom_value=False
|
515 |
+
)
|
516 |
|
517 |
+
status_output = gr.Textbox(label="Status", lines=2, interactive=False)
|
518 |
patient_state = gr.State()
|
519 |
claim_state = gr.State()
|
520 |
mc_state = gr.State()
|
|
|
526 |
prov_chart1 = gr.Image(label="Total Visits by Providers", interactive=False)
|
527 |
prov_chart2 = gr.Image(label="Total MC by Providers", interactive=False)
|
528 |
with gr.Row():
|
529 |
+
prov_chart3 = gr.Image(label="% MC Given by Providers (Top 20)", interactive=False, visible=True)
|
|
|
530 |
with gr.Row():
|
531 |
+
prov_chart4 = gr.Image(label="Total Claim by Providers", interactive=False)
|
532 |
prov_chart5 = gr.Image(label="Average Claim per Visit by Providers", interactive=False)
|
|
|
533 |
|
534 |
with gr.TabItem("Employee Insights"):
|
535 |
gr.Markdown("## Employee Insights Dashboard")
|
|
|
541 |
emp_chart4 = gr.Image(label="Total MC by Employees", interactive=False)
|
542 |
with gr.Row():
|
543 |
emp_chart5 = gr.Image(label="Average MC per Visit by Employees", interactive=False)
|
544 |
+
emp_chart6 = gr.Image(label="Claim Distribution by Division", interactive=False)
|
|
|
|
|
545 |
|
546 |
+
# [Event handlers remain unchanged, just ensure inputs/outputs match the above components]
|
547 |
+
def scrape_and_store(url, user_id, password, show_mc_pct, mc_sort_order):
|
548 |
patient_data_by_year, claim_data_by_year, mc_data_by_year, status = scrape_data(url, user_id, password)
|
549 |
if patient_data_by_year is None or claim_data_by_year is None or mc_data_by_year is None:
|
550 |
return status, None, None, None
|
551 |
|
552 |
+
provider_images, employee_images = generate_dashboard_charts(
|
553 |
+
patient_data_by_year, claim_data_by_year, mc_data_by_year, "2024", show_mc_pct, mc_sort_order)
|
554 |
return (
|
555 |
status, patient_data_by_year, claim_data_by_year, mc_data_by_year,
|
556 |
+
provider_images[0], provider_images[1], provider_images[2], provider_images[3], provider_images[4],
|
557 |
+
employee_images[0], employee_images[1], employee_images[2], employee_images[3], employee_images[4], employee_images[5]
|
558 |
)
|
559 |
|
560 |
+
def update_dashboard(year, patient_data_by_year, claim_data_by_year, mc_data_by_year, show_mc_pct, mc_sort_order):
|
561 |
if not patient_data_by_year or not claim_data_by_year or not mc_data_by_year:
|
562 |
+
return [None] * 11
|
563 |
+
provider_images, employee_images = generate_dashboard_charts(
|
564 |
+
patient_data_by_year, claim_data_by_year, mc_data_by_year, year, show_mc_pct, mc_sort_order)
|
565 |
return (
|
566 |
+
provider_images[0], provider_images[1], provider_images[2], provider_images[3], provider_images[4],
|
567 |
+
employee_images[0], employee_images[1], employee_images[2], employee_images[3], employee_images[4], employee_images[5]
|
568 |
)
|
569 |
|
570 |
scrape_btn.click(
|
571 |
+
fn=lambda url, user_id, password: scrape_and_store(url, user_id, password, show_mc_pct_checkbox.value, mc_sort_dropdown.value),
|
572 |
inputs=[url_input, user_id_input, password_input],
|
573 |
outputs=[
|
574 |
status_output, patient_state, claim_state, mc_state,
|
575 |
+
prov_chart1, prov_chart2, prov_chart3, prov_chart4, prov_chart5,
|
576 |
+
emp_chart1, emp_chart2, emp_chart3, emp_chart4, emp_chart5, emp_chart6
|
577 |
]
|
578 |
)
|
579 |
|
580 |
year_dropdown.change(
|
581 |
fn=update_dashboard,
|
582 |
+
inputs=[year_dropdown, patient_state, claim_state, mc_state, show_mc_pct_checkbox, mc_sort_dropdown],
|
583 |
outputs=[
|
584 |
+
prov_chart1, prov_chart2, prov_chart3, prov_chart4, prov_chart5,
|
585 |
+
emp_chart1, emp_chart2, emp_chart3, emp_chart4, emp_chart5, emp_chart6
|
586 |
]
|
587 |
)
|
588 |
|
589 |
show_mc_pct_checkbox.change(
|
590 |
fn=update_dashboard,
|
591 |
+
inputs=[year_dropdown, patient_state, claim_state, mc_state, show_mc_pct_checkbox, mc_sort_dropdown],
|
592 |
+
outputs=[
|
593 |
+
prov_chart1, prov_chart2, prov_chart3, prov_chart4, prov_chart5,
|
594 |
+
emp_chart1, emp_chart2, emp_chart3, emp_chart4, emp_chart5, emp_chart6
|
595 |
+
]
|
596 |
+
)
|
597 |
+
|
598 |
+
mc_sort_dropdown.change(
|
599 |
+
fn=update_dashboard,
|
600 |
+
inputs=[year_dropdown, patient_state, claim_state, mc_state, show_mc_pct_checkbox, mc_sort_dropdown],
|
601 |
outputs=[
|
602 |
+
prov_chart1, prov_chart2, prov_chart3, prov_chart4, prov_chart5,
|
603 |
+
emp_chart1, emp_chart2, emp_chart3, emp_chart4, emp_chart5, emp_chart6
|
604 |
]
|
605 |
)
|
606 |
|
607 |
+
demo.launch(share=True)
|