Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,162 +1,164 @@
|
|
1 |
-
|
2 |
import numpy as np
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
import faiss
|
5 |
import re
|
6 |
import gradio as gr
|
7 |
|
8 |
-
|
9 |
-
"""
|
10 |
-
Preprocess the text into structured question-answer pairs
|
11 |
-
"""
|
12 |
-
# Split text into sections by questions
|
13 |
-
sections = []
|
14 |
-
current_section = []
|
15 |
-
|
16 |
-
for line in text.split('\n'):
|
17 |
-
line = line.strip()
|
18 |
-
if line.startswith('Question'):
|
19 |
-
if current_section:
|
20 |
-
sections.append(' '.join(current_section))
|
21 |
-
current_section = [line]
|
22 |
-
elif line:
|
23 |
-
current_section.append(line)
|
24 |
-
|
25 |
-
if current_section:
|
26 |
-
sections.append(' '.join(current_section))
|
27 |
-
|
28 |
-
# Create a structured format
|
29 |
-
structured_sections = []
|
30 |
-
for section in sections:
|
31 |
-
# Remove page numbers and other irrelevant text
|
32 |
-
section = re.sub(r'\d+\s*$', '', section)
|
33 |
-
section = re.sub(r'TRAPS:|BEST ANSWER:|PASSABLE ANSWER:', ' ', section)
|
34 |
-
structured_sections.append(section.strip())
|
35 |
-
|
36 |
-
return structured_sections
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
# Search for the most similar chunks
|
47 |
-
k = 1 # Get only the best match
|
48 |
-
similarities, indices = index.search(question_embedding, k)
|
49 |
-
|
50 |
-
best_idx = indices[0][0]
|
51 |
-
similarity_score = similarities[0][0] # Cosine similarity score
|
52 |
-
|
53 |
-
if similarity_score >= similarity_threshold:
|
54 |
-
matched_text = text_chunks[best_idx]
|
55 |
-
# Extract just the question number for reference
|
56 |
-
question_num = re.search(r'Question \d+:', matched_text)
|
57 |
-
question_num = question_num.group(0) if question_num else "Matching section"
|
58 |
-
|
59 |
-
return {
|
60 |
-
'question': question_num,
|
61 |
-
'full_text': matched_text,
|
62 |
-
'confidence': float(similarity_score),
|
63 |
-
'found_answer': True
|
64 |
-
}
|
65 |
-
else:
|
66 |
-
return {
|
67 |
-
'question': None,
|
68 |
-
'full_text': "I couldn't find a sufficiently relevant answer to your question in the provided document.",
|
69 |
-
'confidence': float(similarity_score),
|
70 |
-
'found_answer': False
|
71 |
-
}
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
if text:
|
83 |
-
pdf_text += text + "\n"
|
84 |
-
|
85 |
-
# Process text and create embeddings
|
86 |
-
text_chunks = preprocess_text(pdf_text)
|
87 |
-
model = SentenceTransformer("all-MiniLM-L6-v2")
|
88 |
-
embeddings = model.encode(text_chunks)
|
89 |
-
|
90 |
-
# Create index
|
91 |
-
dimension = embeddings.shape[1]
|
92 |
-
faiss.normalize_L2(embeddings)
|
93 |
-
index = faiss.IndexFlatIP(dimension)
|
94 |
-
index.add(embeddings)
|
95 |
-
|
96 |
-
return {
|
97 |
-
'model': model,
|
98 |
-
'index': index,
|
99 |
-
'text_chunks': text_chunks,
|
100 |
-
'status': f"System initialized with {len(text_chunks)} text chunks from your PDF!"
|
101 |
-
}
|
102 |
-
except Exception as e:
|
103 |
-
return {
|
104 |
-
'model': None,
|
105 |
-
'index': None,
|
106 |
-
'text_chunks': None,
|
107 |
-
'status': f"Error: {str(e)}"
|
108 |
-
}
|
109 |
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
qa_system = result
|
118 |
-
return result['status']
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
136 |
|
137 |
-
# Create the Gradio interface
|
138 |
-
with gr.Blocks(title="Interview Q&A Assistant") as demo:
|
139 |
-
|
140 |
-
gr.
|
|
|
|
|
|
|
141 |
|
|
|
142 |
with gr.Row():
|
143 |
-
with gr.Column():
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
with gr.Row():
|
149 |
-
with gr.Column():
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
with gr.Row():
|
154 |
-
|
|
|
|
|
|
|
|
|
155 |
|
156 |
-
# Set up events
|
157 |
upload_button.click(upload_file, inputs=pdf_upload, outputs=status_text)
|
158 |
submit_button.click(answer_question, inputs=question_input, outputs=answer_output)
|
159 |
|
160 |
# Launch the app
|
161 |
if __name__ == "__main__":
|
162 |
-
demo.launch(share=True)
|
|
|
|
|
1 |
import numpy as np
|
2 |
from sentence_transformers import SentenceTransformer
|
3 |
import faiss
|
4 |
import re
|
5 |
import gradio as gr
|
6 |
|
7 |
+
# [Previous functions remain exactly the same - preprocess_text, query_qa_system, initialize_qa_system, etc.]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Custom CSS for professional styling
|
10 |
+
custom_css = """
|
11 |
+
.gradio-container {
|
12 |
+
max-width: 1200px !important;
|
13 |
+
margin: auto !important;
|
14 |
+
padding: 20px !important;
|
15 |
+
background-color: #f8f9fa !important;
|
16 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
.main-header {
|
19 |
+
text-align: center;
|
20 |
+
margin-bottom: 2rem;
|
21 |
+
padding: 2rem;
|
22 |
+
background: linear-gradient(135deg, #1a365d 0%, #2c5282 100%);
|
23 |
+
color: white;
|
24 |
+
border-radius: 10px;
|
25 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
26 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
.main-header h1 {
|
29 |
+
font-size: 2.5rem;
|
30 |
+
margin-bottom: 1rem;
|
31 |
+
font-weight: 600;
|
32 |
+
}
|
33 |
|
34 |
+
.main-header p {
|
35 |
+
font-size: 1.1rem;
|
36 |
+
opacity: 0.9;
|
37 |
+
}
|
|
|
|
|
38 |
|
39 |
+
.upload-section {
|
40 |
+
background: white;
|
41 |
+
padding: 2rem;
|
42 |
+
border-radius: 10px;
|
43 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
|
44 |
+
margin-bottom: 2rem;
|
45 |
+
}
|
46 |
+
|
47 |
+
.qa-section {
|
48 |
+
background: white;
|
49 |
+
padding: 2rem;
|
50 |
+
border-radius: 10px;
|
51 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
|
52 |
+
}
|
53 |
|
54 |
+
.status-box {
|
55 |
+
margin-top: 1rem;
|
56 |
+
padding: 1rem;
|
57 |
+
border-radius: 8px;
|
58 |
+
background: #f0f9ff;
|
59 |
+
border: 1px solid #bae6fd;
|
60 |
+
}
|
61 |
+
|
62 |
+
.custom-button {
|
63 |
+
background: #2563eb !important;
|
64 |
+
color: white !important;
|
65 |
+
border-radius: 8px !important;
|
66 |
+
padding: 0.75rem 1.5rem !important;
|
67 |
+
font-weight: 500 !important;
|
68 |
+
}
|
69 |
+
|
70 |
+
.custom-button:hover {
|
71 |
+
background: #1d4ed8 !important;
|
72 |
+
}
|
73 |
+
|
74 |
+
.answer-box {
|
75 |
+
background: #f8fafc !important;
|
76 |
+
border: 1px solid #e2e8f0 !important;
|
77 |
+
border-radius: 8px !important;
|
78 |
+
font-family: 'Source Code Pro', monospace !important;
|
79 |
+
}
|
80 |
+
|
81 |
+
.section-title {
|
82 |
+
color: #1e293b;
|
83 |
+
font-size: 1.25rem;
|
84 |
+
font-weight: 600;
|
85 |
+
margin-bottom: 1rem;
|
86 |
+
}
|
87 |
+
|
88 |
+
/* Responsive design */
|
89 |
+
@media (max-width: 768px) {
|
90 |
+
.gradio-container {
|
91 |
+
padding: 10px !important;
|
92 |
+
}
|
93 |
+
|
94 |
+
.main-header {
|
95 |
+
padding: 1.5rem;
|
96 |
+
}
|
97 |
|
98 |
+
.main-header h1 {
|
99 |
+
font-size: 2rem;
|
100 |
+
}
|
101 |
+
}
|
102 |
+
"""
|
103 |
|
104 |
+
# Create the enhanced Gradio interface
|
105 |
+
with gr.Blocks(title="Interview Q&A Assistant", css=custom_css) as demo:
|
106 |
+
# Header Section
|
107 |
+
with gr.Row(elem_classes=["main-header"]):
|
108 |
+
with gr.Column():
|
109 |
+
gr.Markdown("# Interview Q&A Assistant")
|
110 |
+
gr.Markdown("Your AI-powered interview preparation companion. Upload your interview questions PDF and get instant, relevant answers to your queries.")
|
111 |
|
112 |
+
# Upload Section
|
113 |
with gr.Row():
|
114 |
+
with gr.Column(elem_classes=["upload-section"]):
|
115 |
+
gr.Markdown("### 📁 Document Upload", elem_classes=["section-title"])
|
116 |
+
with gr.Row():
|
117 |
+
pdf_upload = gr.File(
|
118 |
+
label="Upload your interview questions PDF",
|
119 |
+
file_types=[".pdf"],
|
120 |
+
elem_classes=["file-upload"]
|
121 |
+
)
|
122 |
+
with gr.Row():
|
123 |
+
upload_button = gr.Button("Initialize Q&A System", elem_classes=["custom-button"])
|
124 |
+
with gr.Row():
|
125 |
+
status_text = gr.Textbox(
|
126 |
+
label="System Status",
|
127 |
+
value="Upload a PDF to begin",
|
128 |
+
elem_classes=["status-box"]
|
129 |
+
)
|
130 |
+
|
131 |
+
# Q&A Section
|
132 |
with gr.Row():
|
133 |
+
with gr.Column(elem_classes=["qa-section"]):
|
134 |
+
gr.Markdown("### 💡 Ask Questions", elem_classes=["section-title"])
|
135 |
+
with gr.Row():
|
136 |
+
question_input = gr.Textbox(
|
137 |
+
label="What would you like to know about the interview?",
|
138 |
+
placeholder="e.g., What are the common behavioral questions?",
|
139 |
+
lines=2
|
140 |
+
)
|
141 |
+
with gr.Row():
|
142 |
+
submit_button = gr.Button("Get Answer", elem_classes=["custom-button"])
|
143 |
+
with gr.Row():
|
144 |
+
answer_output = gr.Textbox(
|
145 |
+
label="Answer",
|
146 |
+
lines=10,
|
147 |
+
elem_classes=["answer-box"]
|
148 |
+
)
|
149 |
+
|
150 |
+
# Information Section
|
151 |
with gr.Row():
|
152 |
+
gr.Markdown("""
|
153 |
+
<div style="text-align: center; padding: 2rem; color: #64748b; font-size: 0.9rem;">
|
154 |
+
Made with ❤️ for interview preparation success
|
155 |
+
</div>
|
156 |
+
""")
|
157 |
|
158 |
+
# Set up events (keeping the same functionality)
|
159 |
upload_button.click(upload_file, inputs=pdf_upload, outputs=status_text)
|
160 |
submit_button.click(answer_question, inputs=question_input, outputs=answer_output)
|
161 |
|
162 |
# Launch the app
|
163 |
if __name__ == "__main__":
|
164 |
+
demo.launch(share=True)
|