Spaces:
Sleeping
Sleeping
Create the py
Browse files
app.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
import faiss
|
4 |
+
import re
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
def preprocess_text(text):
|
8 |
+
"""
|
9 |
+
Preprocess the text into structured question-answer pairs
|
10 |
+
"""
|
11 |
+
# Split text into sections by questions
|
12 |
+
sections = []
|
13 |
+
current_section = []
|
14 |
+
|
15 |
+
for line in text.split('\n'):
|
16 |
+
line = line.strip()
|
17 |
+
if line.startswith('Question'):
|
18 |
+
if current_section:
|
19 |
+
sections.append(' '.join(current_section))
|
20 |
+
current_section = [line]
|
21 |
+
elif line:
|
22 |
+
current_section.append(line)
|
23 |
+
|
24 |
+
if current_section:
|
25 |
+
sections.append(' '.join(current_section))
|
26 |
+
|
27 |
+
# Create a structured format
|
28 |
+
structured_sections = []
|
29 |
+
for section in sections:
|
30 |
+
# Remove page numbers and other irrelevant text
|
31 |
+
section = re.sub(r'\d+\s*$', '', section)
|
32 |
+
section = re.sub(r'TRAPS:|BEST ANSWER:|PASSABLE ANSWER:', ' ', section)
|
33 |
+
structured_sections.append(section.strip())
|
34 |
+
|
35 |
+
return structured_sections
|
36 |
+
|
37 |
+
def query_qa_system(question, model, index, text_chunks, similarity_threshold=0.4):
|
38 |
+
"""
|
39 |
+
Query the QA system with improved matching
|
40 |
+
"""
|
41 |
+
# Encode and normalize the question
|
42 |
+
question_embedding = model.encode([question])
|
43 |
+
faiss.normalize_L2(question_embedding)
|
44 |
+
|
45 |
+
# Search for the most similar chunks
|
46 |
+
k = 1 # Get only the best match
|
47 |
+
similarities, indices = index.search(question_embedding, k)
|
48 |
+
|
49 |
+
best_idx = indices[0][0]
|
50 |
+
similarity_score = similarities[0][0] # Cosine similarity score
|
51 |
+
|
52 |
+
if similarity_score >= similarity_threshold:
|
53 |
+
matched_text = text_chunks[best_idx]
|
54 |
+
# Extract just the question number for reference
|
55 |
+
question_num = re.search(r'Question \d+:', matched_text)
|
56 |
+
question_num = question_num.group(0) if question_num else "Matching section"
|
57 |
+
|
58 |
+
return {
|
59 |
+
'question': question_num,
|
60 |
+
'full_text': matched_text,
|
61 |
+
'confidence': float(similarity_score),
|
62 |
+
'found_answer': True
|
63 |
+
}
|
64 |
+
else:
|
65 |
+
return {
|
66 |
+
'question': None,
|
67 |
+
'full_text': "I couldn't find a sufficiently relevant answer to your question in the provided document.",
|
68 |
+
'confidence': float(similarity_score),
|
69 |
+
'found_answer': False
|
70 |
+
}
|
71 |
+
|
72 |
+
# Function to handle PDF file upload and initialization
|
73 |
+
def initialize_qa_system(pdf_file):
|
74 |
+
# Read the uploaded PDF
|
75 |
+
try:
|
76 |
+
from PyPDF2 import PdfReader
|
77 |
+
pdf_reader = PdfReader(pdf_file.name)
|
78 |
+
pdf_text = ""
|
79 |
+
for page in pdf_reader.pages:
|
80 |
+
text = page.extract_text()
|
81 |
+
if text:
|
82 |
+
pdf_text += text + "\n"
|
83 |
+
|
84 |
+
# Process text and create embeddings
|
85 |
+
text_chunks = preprocess_text(pdf_text)
|
86 |
+
model = SentenceTransformer("all-MiniLM-L6-v2")
|
87 |
+
embeddings = model.encode(text_chunks)
|
88 |
+
|
89 |
+
# Create index
|
90 |
+
dimension = embeddings.shape[1]
|
91 |
+
faiss.normalize_L2(embeddings)
|
92 |
+
index = faiss.IndexFlatIP(dimension)
|
93 |
+
index.add(embeddings)
|
94 |
+
|
95 |
+
return {
|
96 |
+
'model': model,
|
97 |
+
'index': index,
|
98 |
+
'text_chunks': text_chunks,
|
99 |
+
'status': f"System initialized with {len(text_chunks)} text chunks from your PDF!"
|
100 |
+
}
|
101 |
+
except Exception as e:
|
102 |
+
return {
|
103 |
+
'model': None,
|
104 |
+
'index': None,
|
105 |
+
'text_chunks': None,
|
106 |
+
'status': f"Error: {str(e)}"
|
107 |
+
}
|
108 |
+
|
109 |
+
# Global variables to store our QA system components
|
110 |
+
qa_system = {'model': None, 'index': None, 'text_chunks': None}
|
111 |
+
|
112 |
+
# Function to handle file upload
|
113 |
+
def upload_file(pdf_file):
|
114 |
+
global qa_system
|
115 |
+
result = initialize_qa_system(pdf_file)
|
116 |
+
qa_system = result
|
117 |
+
return result['status']
|
118 |
+
|
119 |
+
# Function to handle questions
|
120 |
+
def answer_question(question):
|
121 |
+
global qa_system
|
122 |
+
|
123 |
+
if not qa_system['model'] or not qa_system['index'] or not qa_system['text_chunks']:
|
124 |
+
return "Please upload a PDF file first."
|
125 |
+
|
126 |
+
result = query_qa_system(question, qa_system['model'], qa_system['index'], qa_system['text_chunks'])
|
127 |
+
answer_start = result['full_text'].find('Answer:') + len('Answer:')
|
128 |
+
answer = result['full_text'][answer_start:].strip()
|
129 |
+
|
130 |
+
|
131 |
+
if result['found_answer']:
|
132 |
+
return f"Match (confidence: {result['confidence']:.2f}):\n\n{answer}"
|
133 |
+
else:
|
134 |
+
return f"{answer}\nBest match confidence: {result['confidence']:.2f}"
|
135 |
+
|
136 |
+
# Create the Gradio interface
|
137 |
+
with gr.Blocks(title="Interview Q&A Assistant") as demo:
|
138 |
+
gr.Markdown("# Interview Q&A Assistant")
|
139 |
+
gr.Markdown("Upload your interview questions PDF and ask questions to get the most relevant sections.")
|
140 |
+
|
141 |
+
with gr.Row():
|
142 |
+
with gr.Column():
|
143 |
+
pdf_upload = gr.File(label="Upload PDF File")
|
144 |
+
upload_button = gr.Button("Initialize Q&A System")
|
145 |
+
status_text = gr.Textbox(label="Status", value="Upload a PDF to begin")
|
146 |
+
|
147 |
+
with gr.Row():
|
148 |
+
with gr.Column():
|
149 |
+
question_input = gr.Textbox(label="Ask a question about interview preparation")
|
150 |
+
submit_button = gr.Button("Get Answer")
|
151 |
+
|
152 |
+
with gr.Row():
|
153 |
+
answer_output = gr.Textbox(label="Answer", lines=10)
|
154 |
+
|
155 |
+
# Set up events
|
156 |
+
upload_button.click(upload_file, inputs=pdf_upload, outputs=status_text)
|
157 |
+
submit_button.click(answer_question, inputs=question_input, outputs=answer_output)
|
158 |
+
|
159 |
+
# Launch the app
|
160 |
+
if __name__ == "__main__":
|
161 |
+
demo.launch(share=True)
|