Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import PyPDF2
|
5 |
+
import gradio as gr
|
6 |
+
from transformers import pipeline
|
7 |
+
|
8 |
+
# Load classification model
|
9 |
+
text_classifier = pipeline("text-classification", model="saattrupdan/job-listing-filtering-model")
|
10 |
+
|
11 |
+
# Label mapping for binary classification
|
12 |
+
LABEL_MAP = {
|
13 |
+
"LABEL_0": "Irrelevant",
|
14 |
+
"LABEL_1": "Relevant"
|
15 |
+
}
|
16 |
+
|
17 |
+
def clean_resume_text(text):
|
18 |
+
text = re.sub(r'http\S+', ' ', text)
|
19 |
+
text = re.sub(r'#\S+', '', text)
|
20 |
+
text = re.sub(r'@\S+', ' ', text)
|
21 |
+
text = re.sub(r'[^\w\s]', ' ', text)
|
22 |
+
text = re.sub(r'[^\x00-\x7f]', ' ', text)
|
23 |
+
return re.sub(r'\s+', ' ', text).strip()
|
24 |
+
|
25 |
+
def extract_resume_text(file):
|
26 |
+
try:
|
27 |
+
reader = PyPDF2.PdfReader(file)
|
28 |
+
text = ""
|
29 |
+
for page in reader.pages:
|
30 |
+
page_text = page.extract_text()
|
31 |
+
if page_text:
|
32 |
+
text += page_text + " "
|
33 |
+
return text, None if text.strip() else "No text found in PDF"
|
34 |
+
except Exception as e:
|
35 |
+
return None, f"Error reading PDF: {str(e)}"
|
36 |
+
|
37 |
+
def filter_relevant_resumes(files):
|
38 |
+
predictions = {}
|
39 |
+
relevant_files = []
|
40 |
+
|
41 |
+
# Create temp dir for filtered files
|
42 |
+
if os.path.exists("filtered_resumes"):
|
43 |
+
shutil.rmtree("filtered_resumes")
|
44 |
+
os.makedirs("filtered_resumes", exist_ok=True)
|
45 |
+
|
46 |
+
for file in files:
|
47 |
+
file_name = file.name.split("/")[-1]
|
48 |
+
resume_text, error = extract_resume_text(file)
|
49 |
+
if error:
|
50 |
+
predictions[file_name] = {"error": error}
|
51 |
+
continue
|
52 |
+
|
53 |
+
cleaned_text = clean_resume_text(resume_text)
|
54 |
+
result = text_classifier(cleaned_text[:512])
|
55 |
+
label = result[0]['label']
|
56 |
+
score = round(result[0]['score'], 4)
|
57 |
+
|
58 |
+
status = LABEL_MAP.get(label, "Unknown")
|
59 |
+
predictions[file_name] = {
|
60 |
+
"Relevance": status,
|
61 |
+
"Confidence Score": score
|
62 |
+
}
|
63 |
+
|
64 |
+
if status == "Relevant":
|
65 |
+
# Copy file to filtered folder
|
66 |
+
dest_path = f"filtered_resumes/{file_name}"
|
67 |
+
with open(dest_path, "wb") as f_out:
|
68 |
+
f_out.write(file.read())
|
69 |
+
relevant_files.append(dest_path)
|
70 |
+
|
71 |
+
return predictions, relevant_files
|
72 |
+
|
73 |
+
# Gradio UI
|
74 |
+
with gr.Blocks(title="Resume Relevance Classifier & Filter") as demo:
|
75 |
+
gr.Markdown("## 📂 Resume Relevance Filter using Hugging Face Model\nUpload PDF resumes and filter out only the relevant ones.")
|
76 |
+
|
77 |
+
file_input = gr.File(file_types=[".pdf"], file_count="multiple", label="Upload Resume PDFs")
|
78 |
+
|
79 |
+
with gr.Row():
|
80 |
+
classify_button = gr.Button("🧠 Classify and Filter Relevant Resumes")
|
81 |
+
|
82 |
+
relevance_output = gr.JSON(label="Classification Results")
|
83 |
+
relevant_resume_gallery = gr.File(label="Download Relevant Resumes", file_types=[".pdf"], file_count="multiple")
|
84 |
+
|
85 |
+
classify_button.click(fn=filter_relevant_resumes, inputs=[file_input], outputs=[relevance_output, relevant_resume_gallery])
|
86 |
+
|
87 |
+
if __name__ == "__main__":
|
88 |
+
demo.launch()
|