Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,121 +4,138 @@ import shutil
|
|
4 |
import PyPDF2
|
5 |
import gradio as gr
|
6 |
from transformers import pipeline
|
7 |
-
from collections import defaultdict
|
8 |
|
9 |
-
#
|
10 |
-
text_classifier = pipeline("text-classification", model="serbog/distilbert-jobCategory_410k")
|
11 |
-
|
12 |
-
# Expanded label map (you can update based on actual model labels returned)
|
13 |
CATEGORY_MAP = {
|
14 |
-
"
|
15 |
-
"
|
16 |
-
"
|
17 |
-
"
|
18 |
-
"
|
19 |
-
"
|
20 |
-
"
|
21 |
-
"
|
22 |
-
"
|
23 |
-
"
|
24 |
-
"
|
25 |
-
"
|
26 |
-
"
|
27 |
-
"
|
28 |
-
"
|
29 |
-
"
|
30 |
-
"
|
31 |
-
"
|
32 |
-
"
|
33 |
-
"
|
34 |
-
"
|
35 |
-
"
|
36 |
-
"
|
37 |
-
"
|
38 |
-
"
|
39 |
-
"
|
40 |
-
"
|
41 |
-
"
|
42 |
-
"
|
43 |
-
"
|
44 |
-
"
|
45 |
}
|
46 |
|
47 |
-
#
|
48 |
-
|
|
|
|
|
|
|
49 |
text = re.sub(r'http\S+', ' ', text)
|
50 |
-
text = re.sub(r'#\S+', '', text)
|
51 |
-
text = re.sub(r'@\S+', ' ', text)
|
52 |
-
text = re.sub(r'[^\w\s]', ' ', text)
|
53 |
text = re.sub(r'[^\x00-\x7f]', ' ', text)
|
54 |
-
|
|
|
|
|
55 |
|
56 |
-
def
|
57 |
try:
|
58 |
reader = PyPDF2.PdfReader(file)
|
59 |
text = ""
|
60 |
for page in reader.pages:
|
61 |
-
|
62 |
-
if
|
63 |
-
text +=
|
64 |
-
return text, None if text
|
65 |
except Exception as e:
|
66 |
-
return None,
|
67 |
|
|
|
68 |
def classify_resumes(files):
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
72 |
|
73 |
for file in files:
|
74 |
file_name = os.path.basename(file.name)
|
75 |
-
resume_text, error =
|
76 |
if error:
|
|
|
77 |
continue
|
78 |
|
79 |
-
cleaned_text =
|
80 |
-
result =
|
81 |
-
|
|
|
82 |
score = round(result['score'], 4)
|
83 |
-
category = CATEGORY_MAP.get(label,
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
89 |
|
90 |
-
|
|
|
|
|
|
|
|
|
91 |
shutil.copyfileobj(f_in, f_out)
|
92 |
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
95 |
|
96 |
-
|
|
|
|
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
Upload resumes below. The app classifies each into categories like IT, HR, Sales, etc. Then click on any category to view/download relevant resumes.""")
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
|
113 |
-
|
114 |
-
resume_file_list = gr.File(label="Filtered Resumes in Selected Category", file_count="multiple")
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
119 |
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
122 |
|
123 |
if __name__ == "__main__":
|
124 |
-
|
|
|
4 |
import PyPDF2
|
5 |
import gradio as gr
|
6 |
from transformers import pipeline
|
|
|
7 |
|
8 |
+
# ------------------- Category Mapping -------------------
|
|
|
|
|
|
|
9 |
CATEGORY_MAP = {
|
10 |
+
"C0": "Administration / Clerical",
|
11 |
+
"C1": "Agriculture / Environmental / Forestry",
|
12 |
+
"C2": "Information Technology / Software Engineering",
|
13 |
+
"C3": "Data Science / Machine Learning / AI",
|
14 |
+
"C4": "Finance / Accounting / Auditing",
|
15 |
+
"C5": "Human Resources / Recruitment / Talent Acquisition",
|
16 |
+
"C6": "Sales / Marketing / Business Development",
|
17 |
+
"C7": "Engineering / Mechanical / Civil / Electrical",
|
18 |
+
"C8": "Customer Service / Support",
|
19 |
+
"C9": "Design / UI-UX / Creative",
|
20 |
+
"C10": "Healthcare / Medical / Nursing",
|
21 |
+
"C11": "Education / Training / Teaching",
|
22 |
+
"C12": "Retail / Merchandising / E-commerce",
|
23 |
+
"C13": "Telecommunication / Network Engineering",
|
24 |
+
"C14": "Operations / Logistics / Supply Chain",
|
25 |
+
"C15": "Entrepreneurship / Startups / Freelancing",
|
26 |
+
"C16": "Product Management / Project Management",
|
27 |
+
"C17": "Legal / Compliance",
|
28 |
+
"C18": "Real Estate / Property Management",
|
29 |
+
"C19": "Transportation / Automotive / Aviation",
|
30 |
+
"C20": "Construction / Architecture",
|
31 |
+
"C21": "Energy / Oil & Gas / Utilities",
|
32 |
+
"C22": "Security / Safety",
|
33 |
+
"C23": "Procurement / Purchasing",
|
34 |
+
"C24": "Manufacturing / Production",
|
35 |
+
"C25": "Media / Communication / PR / Journalism",
|
36 |
+
"C26": "Science / Research / R&D",
|
37 |
+
"C27": "Quality Assurance / Control",
|
38 |
+
"C28": "Hospitality / Tourism / Travel",
|
39 |
+
"C29": "Management / Strategy / Consulting",
|
40 |
+
"C30": "Other / Miscellaneous"
|
41 |
}
|
42 |
|
43 |
+
# ------------------- Load Classification Model -------------------
|
44 |
+
classifier = pipeline("text-classification", model="CleveGreen/JobClassifier_v2")
|
45 |
+
|
46 |
+
# ------------------- Resume Utilities -------------------
|
47 |
+
def clean_text(text):
|
48 |
text = re.sub(r'http\S+', ' ', text)
|
|
|
|
|
|
|
49 |
text = re.sub(r'[^\x00-\x7f]', ' ', text)
|
50 |
+
text = re.sub(r'[^\w\s]', ' ', text)
|
51 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
52 |
+
return text
|
53 |
|
54 |
+
def extract_text_from_pdf(file):
|
55 |
try:
|
56 |
reader = PyPDF2.PdfReader(file)
|
57 |
text = ""
|
58 |
for page in reader.pages:
|
59 |
+
content = page.extract_text()
|
60 |
+
if content:
|
61 |
+
text += content + " "
|
62 |
+
return text.strip(), None if text else "No text found in PDF."
|
63 |
except Exception as e:
|
64 |
+
return None, str(e)
|
65 |
|
66 |
+
# ------------------- Resume Classification & Organization -------------------
|
67 |
def classify_resumes(files):
|
68 |
+
predictions = {}
|
69 |
+
classified_files = {}
|
70 |
+
|
71 |
+
if os.path.exists("classified_resumes"):
|
72 |
+
shutil.rmtree("classified_resumes")
|
73 |
+
os.makedirs("classified_resumes")
|
74 |
|
75 |
for file in files:
|
76 |
file_name = os.path.basename(file.name)
|
77 |
+
resume_text, error = extract_text_from_pdf(file)
|
78 |
if error:
|
79 |
+
predictions[file_name] = {"error": error}
|
80 |
continue
|
81 |
|
82 |
+
cleaned_text = clean_text(resume_text)
|
83 |
+
result = classifier(cleaned_text[:512])[0] # Truncate to avoid max token
|
84 |
+
|
85 |
+
label = result['label'] # e.g., C2
|
86 |
score = round(result['score'], 4)
|
87 |
+
category = CATEGORY_MAP.get(label, "Other / Miscellaneous")
|
88 |
|
89 |
+
predictions[file_name] = {
|
90 |
+
"Predicted Job Category": label,
|
91 |
+
"Category Name": category,
|
92 |
+
"Confidence Score": score
|
93 |
+
}
|
94 |
|
95 |
+
category_folder = os.path.join("classified_resumes", category)
|
96 |
+
os.makedirs(category_folder, exist_ok=True)
|
97 |
+
dest_path = os.path.join(category_folder, file_name)
|
98 |
+
|
99 |
+
with open(file.name, "rb") as f_in, open(dest_path, "wb") as f_out:
|
100 |
shutil.copyfileobj(f_in, f_out)
|
101 |
|
102 |
+
if category not in classified_files:
|
103 |
+
classified_files[category] = []
|
104 |
+
classified_files[category].append(dest_path)
|
105 |
+
|
106 |
+
return predictions, classified_files
|
107 |
|
108 |
+
# ------------------- Gradio App -------------------
|
109 |
+
def filter_by_category(category, all_classified):
|
110 |
+
return all_classified.get(category, [])
|
111 |
|
112 |
+
with gr.Blocks(title="Resume Screening & Classification") as app:
|
113 |
+
gr.Markdown("""
|
114 |
+
# π Resume Screening Tool
|
115 |
+
Upload resumes in PDF format. The system will classify them into job categories using a pretrained AI model.
|
116 |
+
""")
|
117 |
|
118 |
+
with gr.Row():
|
119 |
+
uploaded_files = gr.File(file_types=[".pdf"], file_count="multiple", label="Upload Resumes")
|
120 |
+
classify_button = gr.Button("Classify Resumes")
|
|
|
121 |
|
122 |
+
classification_results = gr.JSON(label="Classification Output")
|
123 |
+
category_selector = gr.Dropdown(choices=list(CATEGORY_MAP.values()), label="Filter by Job Category")
|
124 |
+
filtered_resumes_output = gr.File(file_types=[".pdf"], file_count="multiple", label="Filtered Resumes")
|
125 |
|
126 |
+
all_classified_state = gr.State({})
|
|
|
127 |
|
128 |
+
classify_button.click(
|
129 |
+
fn=classify_resumes,
|
130 |
+
inputs=[uploaded_files],
|
131 |
+
outputs=[classification_results, all_classified_state]
|
132 |
+
)
|
133 |
|
134 |
+
category_selector.change(
|
135 |
+
fn=filter_by_category,
|
136 |
+
inputs=[category_selector, all_classified_state],
|
137 |
+
outputs=[filtered_resumes_output]
|
138 |
+
)
|
139 |
|
140 |
if __name__ == "__main__":
|
141 |
+
app.launch()
|