Spaces:
Sleeping
Sleeping
import re | |
import PyPDF2 | |
import gradio as gr | |
from transformers import pipeline | |
from collections import Counter | |
# Load NER pipeline | |
ner_pipeline = pipeline("ner", model="dslim/bert-base-NER", tokenizer="dslim/bert-base-NER", aggregation_strategy="simple") | |
# Load Job Category Classifier | |
text_classifier = pipeline("text-classification", model="serbog/distilbert-jobCategory_410k") | |
# Mapping from category code to readable label | |
CATEGORY_MAP = { | |
"C1": "Engineering", | |
"C2": "Information Technology", | |
"C3": "Sales & Marketing", | |
"C4": "Accounting & Finance", | |
"C5": "Healthcare", | |
"D1": "Education", | |
"D2": "Human Resources", | |
"E1": "Operations & Logistics", | |
"E2": "Legal", | |
"F1": "Customer Support", | |
"Other": "General / Undefined" | |
} | |
def clean_resume_text(text): | |
"""Clean text by removing unwanted characters and formatting.""" | |
text = re.sub(r'http\S+', ' ', text) | |
text = re.sub(r'#\S+', '', text) | |
text = re.sub(r'@\S+', ' ', text) | |
text = re.sub(r'[^\w\s]', ' ', text) | |
text = re.sub(r'[^\x00-\x7f]', ' ', text) | |
return re.sub(r'\s+', ' ', text).strip() | |
def extract_resume_text(file): | |
"""Extract raw text from uploaded PDF.""" | |
try: | |
reader = PyPDF2.PdfReader(file) | |
text = "" | |
for page in reader.pages: | |
page_text = page.extract_text() | |
if page_text: | |
text += page_text + " " | |
if not text.strip(): | |
return None, "Error: No text extracted from PDF." | |
return text, None | |
except Exception as e: | |
return None, f"Error reading PDF: {str(e)}" | |
def classify_resume_ner(entities): | |
"""Basic rule-based NER classification using ORG, LOC, MISC.""" | |
orgs = [e['word'] for e in entities if e['entity_group'] == 'ORG'] | |
locs = [e['word'] for e in entities if e['entity_group'] == 'LOC'] | |
jobs = [e['word'] for e in entities if e['entity_group'] == 'MISC'] | |
dominant_org = Counter(orgs).most_common(1) | |
dominant_loc = Counter(locs).most_common(1) | |
dominant_job = Counter(jobs).most_common(1) | |
return { | |
"Main_Organization": dominant_org[0][0] if dominant_org else "Unknown", | |
"Main_Location": dominant_loc[0][0] if dominant_loc else "Unknown", | |
"Possible_Job/Field (NER)": dominant_job[0][0] if dominant_job else "General" | |
} | |
def process_resumes(files): | |
"""Extract entities and show classification based on NER.""" | |
all_results = {} | |
for file in files: | |
file_name = file.name.split("/")[-1] | |
resume_text, error = extract_resume_text(file) | |
if error: | |
all_results[file_name] = {"error": error} | |
continue | |
cleaned_text = clean_resume_text(resume_text) | |
entities = ner_pipeline(cleaned_text) | |
classification = classify_resume_ner(entities) | |
all_results[file_name] = { | |
"Persons": list({e["word"] for e in entities if e["entity_group"] == "PER"}), | |
"Organizations": list({e["word"] for e in entities if e["entity_group"] == "ORG"}), | |
"Locations": list({e["word"] for e in entities if e["entity_group"] == "LOC"}), | |
"Other Entities": list({e["word"] for e in entities if e["entity_group"] not in ["PER", "ORG", "LOC"]}), | |
"Cleaned_Text": cleaned_text, | |
"Classification (NER)": classification | |
} | |
return all_results | |
def classify_resumes_with_model(files): | |
"""Use job category model to classify resume into readable job field.""" | |
predictions = {} | |
for file in files: | |
file_name = file.name.split("/")[-1] | |
resume_text, error = extract_resume_text(file) | |
if error: | |
predictions[file_name] = {"error": error} | |
continue | |
cleaned_text = clean_resume_text(resume_text) | |
result = text_classifier(cleaned_text[:512]) # Truncate for safety | |
raw_label = result[0]['label'] | |
readable_label = CATEGORY_MAP.get(raw_label, "Unknown") | |
predictions[file_name] = { | |
"Predicted Job Category": readable_label, | |
"Raw Label": raw_label, | |
"Confidence Score": round(result[0]['score'], 4) | |
} | |
return predictions | |
# Gradio Interface | |
with gr.Blocks(title="Resume Analyzer") as demo: | |
gr.Markdown("## π Multi-Resume Entity Extractor & Job Classifier\nUpload multiple PDF resumes. This tool extracts entities using NER and predicts the job field using a trained classifier model.") | |
with gr.Row(): | |
file_input = gr.File(file_types=[".pdf"], label="Upload Resume PDFs", file_count="multiple") | |
with gr.Row(): | |
extract_button = gr.Button("π Extract Entities (NER)") | |
classify_button = gr.Button("π§ Predict Job Category (Model)") | |
output_entities = gr.JSON(label="NER Results & Classification") | |
output_class = gr.JSON(label="Model-Predicted Job Category") | |
extract_button.click(fn=process_resumes, inputs=[file_input], outputs=[output_entities]) | |
classify_button.click(fn=classify_resumes_with_model, inputs=[file_input], outputs=[output_class]) | |
if __name__ == "__main__": | |
demo.launch() | |