Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,14 +4,14 @@ import gradio as gr
|
|
4 |
from transformers import pipeline
|
5 |
from collections import Counter
|
6 |
|
7 |
-
# Load NER pipeline
|
8 |
ner_pipeline = pipeline("ner", model="dslim/bert-base-NER", tokenizer="dslim/bert-base-NER", aggregation_strategy="simple")
|
9 |
|
10 |
-
# Load
|
11 |
-
text_classifier = pipeline("text-classification", model="
|
12 |
-
|
13 |
|
14 |
def clean_resume_text(text):
|
|
|
15 |
text = re.sub(r'http\S+', ' ', text)
|
16 |
text = re.sub(r'#\S+', '', text)
|
17 |
text = re.sub(r'@\S+', ' ', text)
|
@@ -20,6 +20,7 @@ def clean_resume_text(text):
|
|
20 |
return re.sub(r'\s+', ' ', text).strip()
|
21 |
|
22 |
def extract_resume_text(file):
|
|
|
23 |
try:
|
24 |
reader = PyPDF2.PdfReader(file)
|
25 |
text = ""
|
@@ -34,6 +35,7 @@ def extract_resume_text(file):
|
|
34 |
return None, f"Error reading PDF: {str(e)}"
|
35 |
|
36 |
def classify_resume_ner(entities):
|
|
|
37 |
orgs = [e['word'] for e in entities if e['entity_group'] == 'ORG']
|
38 |
locs = [e['word'] for e in entities if e['entity_group'] == 'LOC']
|
39 |
jobs = [e['word'] for e in entities if e['entity_group'] == 'MISC']
|
@@ -49,6 +51,7 @@ def classify_resume_ner(entities):
|
|
49 |
}
|
50 |
|
51 |
def process_resumes(files):
|
|
|
52 |
all_results = {}
|
53 |
for file in files:
|
54 |
file_name = file.name.split("/")[-1]
|
@@ -66,13 +69,14 @@ def process_resumes(files):
|
|
66 |
"Persons": list({e["word"] for e in entities if e["entity_group"] == "PER"}),
|
67 |
"Organizations": list({e["word"] for e in entities if e["entity_group"] == "ORG"}),
|
68 |
"Locations": list({e["word"] for e in entities if e["entity_group"] == "LOC"}),
|
69 |
-
"Other": list({e["word"] for e in entities if e["entity_group"] not in ["PER", "ORG", "LOC"]}),
|
70 |
"Cleaned_Text": cleaned_text,
|
71 |
"Classification (NER)": classification
|
72 |
}
|
73 |
return all_results
|
74 |
|
75 |
def classify_resumes_with_model(files):
|
|
|
76 |
predictions = {}
|
77 |
for file in files:
|
78 |
file_name = file.name.split("/")[-1]
|
@@ -81,26 +85,26 @@ def classify_resumes_with_model(files):
|
|
81 |
predictions[file_name] = {"error": error}
|
82 |
continue
|
83 |
cleaned_text = clean_resume_text(resume_text)
|
84 |
-
result = text_classifier(cleaned_text[:512]) # Truncate long
|
85 |
predictions[file_name] = {
|
86 |
-
"Predicted
|
87 |
-
"Confidence": round(result[0]['score'], 4)
|
88 |
}
|
89 |
return predictions
|
90 |
|
91 |
-
# Gradio
|
92 |
-
with gr.Blocks(title="
|
93 |
-
gr.Markdown("## π Multi-Resume Entity Extractor & Classifier\nUpload multiple PDF resumes
|
94 |
|
95 |
with gr.Row():
|
96 |
-
file_input = gr.File(file_types=[".pdf"], label="Upload
|
97 |
|
98 |
with gr.Row():
|
99 |
-
extract_button = gr.Button("π Extract
|
100 |
-
classify_button = gr.Button("π§ Predict Job
|
101 |
|
102 |
-
output_entities = gr.JSON(label="Entity
|
103 |
-
output_class = gr.JSON(label="Predicted Job
|
104 |
|
105 |
extract_button.click(fn=process_resumes, inputs=[file_input], outputs=[output_entities])
|
106 |
classify_button.click(fn=classify_resumes_with_model, inputs=[file_input], outputs=[output_class])
|
|
|
4 |
from transformers import pipeline
|
5 |
from collections import Counter
|
6 |
|
7 |
+
# Load NER pipeline for entity extraction
|
8 |
ner_pipeline = pipeline("ner", model="dslim/bert-base-NER", tokenizer="dslim/bert-base-NER", aggregation_strategy="simple")
|
9 |
|
10 |
+
# Load Job Category Classifier
|
11 |
+
text_classifier = pipeline("text-classification", model="serbog/distilbert-jobCategory_410k")
|
|
|
12 |
|
13 |
def clean_resume_text(text):
|
14 |
+
"""Clean text by removing URLs, punctuation, non-ASCII chars."""
|
15 |
text = re.sub(r'http\S+', ' ', text)
|
16 |
text = re.sub(r'#\S+', '', text)
|
17 |
text = re.sub(r'@\S+', ' ', text)
|
|
|
20 |
return re.sub(r'\s+', ' ', text).strip()
|
21 |
|
22 |
def extract_resume_text(file):
|
23 |
+
"""Extract raw text from uploaded PDF."""
|
24 |
try:
|
25 |
reader = PyPDF2.PdfReader(file)
|
26 |
text = ""
|
|
|
35 |
return None, f"Error reading PDF: {str(e)}"
|
36 |
|
37 |
def classify_resume_ner(entities):
|
38 |
+
"""Classify by extracting key orgs and locations from NER output."""
|
39 |
orgs = [e['word'] for e in entities if e['entity_group'] == 'ORG']
|
40 |
locs = [e['word'] for e in entities if e['entity_group'] == 'LOC']
|
41 |
jobs = [e['word'] for e in entities if e['entity_group'] == 'MISC']
|
|
|
51 |
}
|
52 |
|
53 |
def process_resumes(files):
|
54 |
+
"""Process multiple resumes with NER and classification."""
|
55 |
all_results = {}
|
56 |
for file in files:
|
57 |
file_name = file.name.split("/")[-1]
|
|
|
69 |
"Persons": list({e["word"] for e in entities if e["entity_group"] == "PER"}),
|
70 |
"Organizations": list({e["word"] for e in entities if e["entity_group"] == "ORG"}),
|
71 |
"Locations": list({e["word"] for e in entities if e["entity_group"] == "LOC"}),
|
72 |
+
"Other Entities": list({e["word"] for e in entities if e["entity_group"] not in ["PER", "ORG", "LOC"]}),
|
73 |
"Cleaned_Text": cleaned_text,
|
74 |
"Classification (NER)": classification
|
75 |
}
|
76 |
return all_results
|
77 |
|
78 |
def classify_resumes_with_model(files):
|
79 |
+
"""Use job category model to predict the field/role."""
|
80 |
predictions = {}
|
81 |
for file in files:
|
82 |
file_name = file.name.split("/")[-1]
|
|
|
85 |
predictions[file_name] = {"error": error}
|
86 |
continue
|
87 |
cleaned_text = clean_resume_text(resume_text)
|
88 |
+
result = text_classifier(cleaned_text[:512]) # Truncate if too long
|
89 |
predictions[file_name] = {
|
90 |
+
"Predicted Job Category": result[0]['label'].replace("_", " ").title(),
|
91 |
+
"Confidence Score": round(result[0]['score'], 4)
|
92 |
}
|
93 |
return predictions
|
94 |
|
95 |
+
# Gradio Interface
|
96 |
+
with gr.Blocks(title="Resume Analyzer") as demo:
|
97 |
+
gr.Markdown("## π Multi-Resume Entity Extractor & Job Category Classifier\nUpload multiple PDF resumes. This tool uses NER to extract info and a job classification model to predict job field/category.")
|
98 |
|
99 |
with gr.Row():
|
100 |
+
file_input = gr.File(file_types=[".pdf"], label="Upload Resumes (PDF)", file_count="multiple")
|
101 |
|
102 |
with gr.Row():
|
103 |
+
extract_button = gr.Button("π Extract Entities")
|
104 |
+
classify_button = gr.Button("π§ Predict Job Category")
|
105 |
|
106 |
+
output_entities = gr.JSON(label="Entity Results & NER Classification")
|
107 |
+
output_class = gr.JSON(label="Predicted Job Category (Model)")
|
108 |
|
109 |
extract_button.click(fn=process_resumes, inputs=[file_input], outputs=[output_entities])
|
110 |
classify_button.click(fn=classify_resumes_with_model, inputs=[file_input], outputs=[output_class])
|