Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,18 +2,19 @@ import re
|
|
2 |
import PyPDF2
|
3 |
import gradio as gr
|
4 |
from transformers import pipeline
|
|
|
5 |
|
6 |
-
# Load the Hugging Face NER
|
7 |
ner_pipeline = pipeline("ner", model="dslim/bert-base-NER", tokenizer="dslim/bert-base-NER", aggregation_strategy="simple")
|
8 |
|
9 |
def clean_resume_text(text):
|
10 |
"""Clean resume text by removing unwanted characters and formatting."""
|
11 |
-
text = re.sub(r'http\S+', ' ', text)
|
12 |
-
text = re.sub(r'#\S+', '', text)
|
13 |
-
text = re.sub(r'@\S+', ' ', text)
|
14 |
-
text = re.sub(r'[^\w\s]', ' ', text)
|
15 |
-
text = re.sub(r'[^\x00-\x7f]', ' ', text)
|
16 |
-
return re.sub(r'\s+', ' ', text).strip()
|
17 |
|
18 |
def extract_resume_text(file):
|
19 |
"""Extract raw text from uploaded PDF file."""
|
@@ -25,54 +26,63 @@ def extract_resume_text(file):
|
|
25 |
if page_text:
|
26 |
text += page_text + " "
|
27 |
if not text.strip():
|
28 |
-
return "Error: No text extracted from PDF."
|
29 |
-
return text
|
30 |
except Exception as e:
|
31 |
-
return f"Error reading PDF: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
def extract_entities_from_pdf(file):
|
34 |
-
"""Main processing function: Extracts and cleans text, runs NER, and returns structured data."""
|
35 |
-
try:
|
36 |
-
resume_text = extract_resume_text(file)
|
37 |
-
if resume_text.startswith("Error"):
|
38 |
-
return {"error": resume_text}
|
39 |
-
|
40 |
-
entities = ner_pipeline(resume_text)
|
41 |
-
|
42 |
result = {
|
43 |
-
"Persons": [],
|
44 |
-
"Organizations": [],
|
45 |
-
"Locations": [],
|
46 |
-
"Other": []
|
|
|
|
|
47 |
}
|
48 |
|
49 |
-
|
50 |
-
label = entity.get("entity_group")
|
51 |
-
word = entity.get("word")
|
52 |
-
if label == "PER":
|
53 |
-
result["Persons"].append(word)
|
54 |
-
elif label == "ORG":
|
55 |
-
result["Organizations"].append(word)
|
56 |
-
elif label == "LOC":
|
57 |
-
result["Locations"].append(word)
|
58 |
-
else:
|
59 |
-
result["Other"].append(word)
|
60 |
|
61 |
-
|
62 |
-
return result
|
63 |
-
|
64 |
-
except Exception as e:
|
65 |
-
return {"error": f"Exception during processing: {str(e)}"}
|
66 |
|
67 |
-
# Gradio
|
68 |
iface = gr.Interface(
|
69 |
-
fn=
|
70 |
-
inputs=gr.File(file_types=[".pdf"]),
|
71 |
-
outputs=gr.JSON(),
|
72 |
-
title="
|
73 |
-
description="Upload
|
74 |
)
|
75 |
|
76 |
-
# Launch
|
77 |
if __name__ == "__main__":
|
78 |
iface.launch()
|
|
|
2 |
import PyPDF2
|
3 |
import gradio as gr
|
4 |
from transformers import pipeline
|
5 |
+
from collections import Counter
|
6 |
|
7 |
+
# Load the Hugging Face NER pipeline
|
8 |
ner_pipeline = pipeline("ner", model="dslim/bert-base-NER", tokenizer="dslim/bert-base-NER", aggregation_strategy="simple")
|
9 |
|
10 |
def clean_resume_text(text):
|
11 |
"""Clean resume text by removing unwanted characters and formatting."""
|
12 |
+
text = re.sub(r'http\S+', ' ', text)
|
13 |
+
text = re.sub(r'#\S+', '', text)
|
14 |
+
text = re.sub(r'@\S+', ' ', text)
|
15 |
+
text = re.sub(r'[^\w\s]', ' ', text)
|
16 |
+
text = re.sub(r'[^\x00-\x7f]', ' ', text)
|
17 |
+
return re.sub(r'\s+', ' ', text).strip()
|
18 |
|
19 |
def extract_resume_text(file):
|
20 |
"""Extract raw text from uploaded PDF file."""
|
|
|
26 |
if page_text:
|
27 |
text += page_text + " "
|
28 |
if not text.strip():
|
29 |
+
return None, "Error: No text extracted from PDF."
|
30 |
+
return text, None
|
31 |
except Exception as e:
|
32 |
+
return None, f"Error reading PDF: {str(e)}"
|
33 |
+
|
34 |
+
def classify_resume(entities):
|
35 |
+
"""Classify resume based on dominant entity types."""
|
36 |
+
orgs = [e['word'] for e in entities if e['entity_group'] == 'ORG']
|
37 |
+
locs = [e['word'] for e in entities if e['entity_group'] == 'LOC']
|
38 |
+
jobs = [e['word'] for e in entities if e['entity_group'] == 'MISC']
|
39 |
+
|
40 |
+
dominant_org = Counter(orgs).most_common(1)
|
41 |
+
dominant_loc = Counter(locs).most_common(1)
|
42 |
+
dominant_job = Counter(jobs).most_common(1)
|
43 |
+
|
44 |
+
return {
|
45 |
+
"Main_Organization": dominant_org[0][0] if dominant_org else "Unknown",
|
46 |
+
"Main_Location": dominant_loc[0][0] if dominant_loc else "Unknown",
|
47 |
+
"Possible_Job/Field": dominant_job[0][0] if dominant_job else "General"
|
48 |
+
}
|
49 |
+
|
50 |
+
def extract_entities_from_pdfs(files):
|
51 |
+
"""Process multiple resumes, extract entities, and classify."""
|
52 |
+
summary = {}
|
53 |
+
|
54 |
+
for file in files:
|
55 |
+
file_name = file.name.split("/")[-1]
|
56 |
+
resume_text, error = extract_resume_text(file)
|
57 |
+
|
58 |
+
if error:
|
59 |
+
summary[file_name] = {"error": error}
|
60 |
+
continue
|
61 |
+
|
62 |
+
cleaned_text = clean_resume_text(resume_text)
|
63 |
+
entities = ner_pipeline(cleaned_text)
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
result = {
|
66 |
+
"Persons": list({e["word"] for e in entities if e["entity_group"] == "PER"}),
|
67 |
+
"Organizations": list({e["word"] for e in entities if e["entity_group"] == "ORG"}),
|
68 |
+
"Locations": list({e["word"] for e in entities if e["entity_group"] == "LOC"}),
|
69 |
+
"Other": list({e["word"] for e in entities if e["entity_group"] not in ["PER", "ORG", "LOC"]}),
|
70 |
+
"Cleaned_Text": cleaned_text,
|
71 |
+
"Classification": classify_resume(entities)
|
72 |
}
|
73 |
|
74 |
+
summary[file_name] = result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
return summary
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
# Gradio UI
|
79 |
iface = gr.Interface(
|
80 |
+
fn=extract_entities_from_pdfs,
|
81 |
+
inputs=gr.File(file_types=[".pdf"], label="Upload Resumes (PDF)", file_count="multiple"),
|
82 |
+
outputs=gr.JSON(label="Resume Classification & Entity Summary"),
|
83 |
+
title="📂 Multi-Resume Entity Extractor & Classifier",
|
84 |
+
description="Upload multiple PDF resumes. This tool extracts text, identifies key entities, and classifies each resume by organizations, locations, and possible job/field."
|
85 |
)
|
86 |
|
|
|
87 |
if __name__ == "__main__":
|
88 |
iface.launch()
|