import gradio as gr from transformers import AutoModel, AutoTokenizer from peft import PeftModel import torch import torch.nn.functional as F # Load models base_model = AutoModel.from_pretrained("BAAI/bge-large-en-v1.5") model = PeftModel.from_pretrained(base_model, "shashu2325/resume-job-matcher-lora") tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-large-en-v1.5") def get_match_score(resume_text, job_text): resume_inputs = tokenizer(resume_text, return_tensors="pt", max_length=512, padding="max_length", truncation=True) job_inputs = tokenizer(job_text, return_tensors="pt", max_length=512, padding="max_length", truncation=True) with torch.no_grad(): resume_outputs = model(**resume_inputs) job_outputs = model(**job_inputs) resume_emb = resume_outputs.last_hidden_state.mean(dim=1) job_emb = job_outputs.last_hidden_state.mean(dim=1) resume_emb = F.normalize(resume_emb, p=2, dim=1) job_emb = F.normalize(job_emb, p=2, dim=1) similarity = torch.sum(resume_emb * job_emb, dim=1) score = torch.sigmoid(similarity).item() return f"Match Score: {score*100:.2f}%" gr.Interface( fn=get_match_score, inputs=[ gr.Textbox(label="Resume Text", lines=12, placeholder="Paste resume here..."), gr.Textbox(label="Job Description", lines=12, placeholder="Paste job description here...") ], outputs="text", title="Resume-Job Matcher", description="Upload resume and job description to get a match score using LoRA fine-tuned BGE model." ).launch()