TLeonidas's picture
Update app.py
d6934a8 verified
raw
history blame
1.93 kB
import requests
import geopy
import joblib
import gradio as gr
# Load the trained model
model = joblib.load('hackathonrf.joblib')
# Function to get latitude and longitude from location name
def get_coordinates(location):
geolocator = geopy.geocoders.Nominatim(user_agent="air_quality_app")
location = geolocator.geocode(location)
return location.latitude, location.longitude, location.address
# Function to get AQI value from OpenWeatherMap API
def get_aqi(latitude, longitude):
api_key = "78b94879cbb50e02397e93687aa24adc" # Hidden API Key
url = f"http://api.openweathermap.org/data/2.5/air_pollution?lat={latitude}&lon={longitude}&appid={api_key}"
response = requests.get(url)
data = response.json()
if 'list' in data and data['list']:
aqi_value = data['list'][0]['main']['aqi']
return aqi_value
else:
return None
# Function to convert AQI value to corresponding label
def convert_to_label(aqi_value):
if aqi_value is None:
return "unknown"
elif aqi_value <= 50:
return "good"
elif aqi_value <= 100:
return "moderate"
elif aqi_value <= 150:
return "unhealthy for sensitive groups"
elif aqi_value <= 200:
return "unhealthy"
elif aqi_value <= 300:
return "very unhealthy"
else:
return "hazardous"
# Function to make prediction
def predict_air_quality(location):
latitude, longitude, city = get_coordinates(location)
aqi_value = get_aqi(latitude, longitude)
air_quality_label = convert_to_label(aqi_value)
return f"{city} air quality is currently '{air_quality_label}', with AQI {aqi_value}"
# Create Gradio interface
iface = gr.Interface(fn=predict_air_quality,
inputs=["text"],
outputs="text",
title="Air Quality Prediction",
description="Enter location:")
iface.launch()