File size: 25,426 Bytes
f1a0148
 
 
5259aa6
 
f1a0148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5259aa6
 
 
 
 
 
 
 
 
 
 
 
 
 
f1a0148
 
 
 
 
 
 
5259aa6
 
 
f1a0148
 
 
 
 
 
 
5259aa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1a0148
 
 
 
5259aa6
 
f1a0148
 
 
5259aa6
f1a0148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5259aa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
from flask import Blueprint, render_template, current_app, jsonify, request, redirect, url_for, flash
from models import db, User, Model, Vote, EloHistory, ModelType
from auth import admin_required
from security import check_user_security_score
from sqlalchemy import func, desc, extract, text
from datetime import datetime, timedelta
import json
import os

admin = Blueprint("admin", __name__, url_prefix="/admin")

@admin.route("/")
@admin_required
def index():
    """Admin dashboard homepage"""
    # Get count statistics
    stats = {
        "total_users": User.query.count(),
        "total_votes": Vote.query.count(),
        "tts_votes": Vote.query.filter_by(model_type=ModelType.TTS).count(),
        "conversational_votes": Vote.query.filter_by(model_type=ModelType.CONVERSATIONAL).count(),
        "tts_models": Model.query.filter_by(model_type=ModelType.TTS).count(),
        "conversational_models": Model.query.filter_by(model_type=ModelType.CONVERSATIONAL).count(),
    }
    
    # Get recent votes
    recent_votes = Vote.query.order_by(Vote.vote_date.desc()).limit(10).all()
    
    # Get recent users
    recent_users = User.query.order_by(User.join_date.desc()).limit(10).all()
    
    # Get daily votes for the past 30 days
    thirty_days_ago = datetime.utcnow().replace(hour=0, minute=0, second=0, microsecond=0) - timedelta(days=30)
    
    daily_votes = db.session.query(
        func.date(Vote.vote_date).label('date'),
        func.count().label('count')
    ).filter(Vote.vote_date >= thirty_days_ago).group_by(
        func.date(Vote.vote_date)
    ).order_by(func.date(Vote.vote_date)).all()
    
    # Generate a complete list of dates for the past 30 days
    date_list = []
    current_date = datetime.utcnow()
    for i in range(30, -1, -1):
        date_list.append((current_date - timedelta(days=i)).date())
    
    # Create a dictionary with actual vote counts
    vote_counts = {day.date: day.count for day in daily_votes}
    
    # Build complete datasets including days with zero votes
    formatted_dates = [date.strftime("%Y-%m-%d") for date in date_list]
    vote_counts_list = [vote_counts.get(date, 0) for date in date_list]
    
    daily_votes_data = {
        "labels": formatted_dates,
        "counts": vote_counts_list
    }
    
    # Get top models
    top_tts_models = Model.query.filter_by(
        model_type=ModelType.TTS
    ).order_by(Model.current_elo.desc()).limit(5).all()
    
    top_conversational_models = Model.query.filter_by(
        model_type=ModelType.CONVERSATIONAL
    ).order_by(Model.current_elo.desc()).limit(5).all()
    
    return render_template(
        "admin/index.html",
        stats=stats,
        recent_votes=recent_votes,
        recent_users=recent_users,
        daily_votes_data=json.dumps(daily_votes_data),
        top_tts_models=top_tts_models,
        top_conversational_models=top_conversational_models
    )

@admin.route("/models")
@admin_required
def models():
    """Manage models"""
    tts_models = Model.query.filter_by(model_type=ModelType.TTS).order_by(Model.name).all()
    conversational_models = Model.query.filter_by(model_type=ModelType.CONVERSATIONAL).order_by(Model.name).all()
    
    return render_template(
        "admin/models.html",
        tts_models=tts_models,
        conversational_models=conversational_models
    )


@admin.route("/model/<model_id>", methods=["GET", "POST"])
@admin_required
def edit_model(model_id):
    """Edit a model"""
    model = Model.query.get_or_404(model_id)
    
    if request.method == "POST":
        model.name = request.form.get("name")
        model.is_active = "is_active" in request.form
        model.is_open = "is_open" in request.form
        model.model_url = request.form.get("model_url")
        
        db.session.commit()
        flash(f"Model '{model.name}' updated successfully", "success")
        return redirect(url_for("admin.models"))
    
    return render_template("admin/edit_model.html", model=model)

@admin.route("/users")
@admin_required
def users():
    """Manage users"""
    users = User.query.order_by(User.username).all()
    admin_users = os.getenv("ADMIN_USERS", "").split(",")
    admin_users = [username.strip() for username in admin_users]
    
    # Calculate security scores for all users
    users_with_scores = []
    for user in users:
        score, factors = check_user_security_score(user.id)
        users_with_scores.append({
            'user': user,
            'security_score': score,
            'security_factors': factors
        })
    
    # Sort by security score (lowest first to highlight problematic users)
    users_with_scores.sort(key=lambda x: x['security_score'])
    
    return render_template("admin/users.html", users_with_scores=users_with_scores, admin_users=admin_users)

@admin.route("/user/<int:user_id>")
@admin_required
def user_detail(user_id):
    """View user details"""
    user = User.query.get_or_404(user_id)
    
    # Get security score and factors
    security_score, security_factors = check_user_security_score(user_id)
    
    # Get user votes
    recent_votes = Vote.query.filter_by(user_id=user_id).order_by(Vote.vote_date.desc()).limit(20).all()
    
    # Get vote statistics
    tts_votes = Vote.query.filter_by(user_id=user_id, model_type=ModelType.TTS).count()
    conversational_votes = Vote.query.filter_by(user_id=user_id, model_type=ModelType.CONVERSATIONAL).count()
    
    # Get comprehensive model bias analysis
    # This counts how often each model was chosen vs how often it appeared
    model_bias_analysis = []
    
    # Get all votes by this user
    user_votes = Vote.query.filter_by(user_id=user_id).all()
    
    if user_votes:
        model_stats = {}
        
        for vote in user_votes:
            # Track model_chosen
            chosen_id = vote.model_chosen
            rejected_id = vote.model_rejected
            
            # Initialize model stats if not exists
            if chosen_id not in model_stats:
                model_stats[chosen_id] = {'chosen': 0, 'appeared': 0, 'name': None}
            if rejected_id not in model_stats:
                model_stats[rejected_id] = {'chosen': 0, 'appeared': 0, 'name': None}
            
            # Count appearances and choices
            model_stats[chosen_id]['chosen'] += 1
            model_stats[chosen_id]['appeared'] += 1
            model_stats[rejected_id]['appeared'] += 1
        
        # Get model names and calculate bias ratios
        for model_id, stats in model_stats.items():
            model = Model.query.get(model_id)
            if model:
                stats['name'] = model.name
                stats['bias_ratio'] = stats['chosen'] / stats['appeared'] if stats['appeared'] > 0 else 0
                stats['model_id'] = model_id
        
        # Sort by bias ratio (highest bias first) and take top 5
        model_bias_analysis = sorted(
            [stats for stats in model_stats.values() if stats['name'] is not None],
            key=lambda x: x['bias_ratio'],
            reverse=True
        )[:5]
    
    return render_template(
        "admin/user_detail.html",
        user=user,
        security_score=security_score,
        security_factors=security_factors,
        recent_votes=recent_votes,
        tts_votes=tts_votes,
        conversational_votes=conversational_votes,
        model_bias_analysis=model_bias_analysis,
        total_votes=tts_votes + conversational_votes
    )

@admin.route("/votes")
@admin_required
def votes():
    """View recent votes"""
    page = request.args.get('page', 1, type=int)
    per_page = 50
    
    # Get votes with pagination
    votes_pagination = Vote.query.order_by(
        Vote.vote_date.desc()
    ).paginate(page=page, per_page=per_page)
    
    return render_template(
        "admin/votes.html",
        votes=votes_pagination.items,
        pagination=votes_pagination
    )

@admin.route("/statistics")
@admin_required
def statistics():
    """View detailed statistics"""
    # Get daily votes for the past 30 days by model type
    thirty_days_ago = datetime.utcnow().replace(hour=0, minute=0, second=0, microsecond=0) - timedelta(days=30)
    
    tts_daily_votes = db.session.query(
        func.date(Vote.vote_date).label('date'),
        func.count().label('count')
    ).filter(
        Vote.vote_date >= thirty_days_ago,
        Vote.model_type == ModelType.TTS
    ).group_by(
        func.date(Vote.vote_date)
    ).order_by(func.date(Vote.vote_date)).all()
    
    conv_daily_votes = db.session.query(
        func.date(Vote.vote_date).label('date'),
        func.count().label('count')
    ).filter(
        Vote.vote_date >= thirty_days_ago,
        Vote.model_type == ModelType.CONVERSATIONAL
    ).group_by(
        func.date(Vote.vote_date)
    ).order_by(func.date(Vote.vote_date)).all()
    
    # Monthly new users
    monthly_users = db.session.query(
        extract('year', User.join_date).label('year'),
        extract('month', User.join_date).label('month'),
        func.count().label('count')
    ).group_by(
        'year', 'month'
    ).order_by('year', 'month').all()
    
    # Generate a complete list of dates for the past 30 days
    date_list = []
    current_date = datetime.utcnow()
    for i in range(30, -1, -1):
        date_list.append((current_date - timedelta(days=i)).date())
    
    # Create dictionaries with actual vote counts
    tts_vote_counts = {day.date: day.count for day in tts_daily_votes}
    conv_vote_counts = {day.date: day.count for day in conv_daily_votes}
    
    # Format dates consistently for charts
    formatted_dates = [date.strftime("%Y-%m-%d") for date in date_list]
    
    # Build complete datasets including days with zero votes
    tts_counts = [tts_vote_counts.get(date, 0) for date in date_list]
    conv_counts = [conv_vote_counts.get(date, 0) for date in date_list]
    
    # Generate all month/year combinations for the past 12 months
    current_date = datetime.utcnow()
    month_list = []
    for i in range(11, -1, -1):
        past_date = current_date - timedelta(days=i*30)  # Approximate
        month_list.append((past_date.year, past_date.month))
    
    # Create a dictionary with actual user counts
    user_counts = {(record.year, record.month): record.count for record in monthly_users}
    
    # Build complete monthly datasets including months with zero new users
    monthly_labels = [f"{month}/{year}" for year, month in month_list]
    monthly_counts = [user_counts.get((year, month), 0) for year, month in month_list]
    
    # Model performance over time
    top_models = Model.query.order_by(Model.match_count.desc()).limit(5).all()
    
    # Get first and last timestamp to create a consistent timeline
    earliest = datetime.utcnow() - timedelta(days=30)  # Default to 30 days ago
    latest = datetime.utcnow()  # Default to now
    
    # Find actual earliest and latest timestamps across all models
    has_elo_history = False
    for model in top_models:
        first = EloHistory.query.filter_by(model_id=model.id).order_by(EloHistory.timestamp).first()
        last = EloHistory.query.filter_by(model_id=model.id).order_by(EloHistory.timestamp.desc()).first()
        
        if first and last:
            has_elo_history = True
            if first.timestamp < earliest:
                earliest = first.timestamp
            if last.timestamp > latest:
                latest = last.timestamp
    
    # If no history was found, use a default range of the last 30 days
    if not has_elo_history:
        earliest = datetime.utcnow() - timedelta(days=30)
        latest = datetime.utcnow()
    
    # Make sure the date range is valid (earliest before latest)
    if earliest > latest:
        earliest = latest - timedelta(days=30)
    
    # Generate a list of dates for the ELO history timeline
    # Using 1-day intervals for a smoother chart
    elo_dates = []
    current = earliest
    while current <= latest:
        elo_dates.append(current.date())
        current += timedelta(days=1)
    
    # Format dates consistently
    formatted_elo_dates = [date.strftime("%Y-%m-%d") for date in elo_dates]
    
    model_history = {}
    
    # Initialize empty data for all top models
    for model in top_models:
        model_history[model.name] = {
            "timestamps": formatted_elo_dates,
            "scores": [None] * len(formatted_elo_dates)  # Initialize with None values
        }
        
        history = EloHistory.query.filter_by(
            model_id=model.id
        ).order_by(EloHistory.timestamp).all()
        
        if history:
            # Create a dictionary mapping dates to scores
            history_dict = {}
            for h in history:
                date_key = h.timestamp.date().strftime("%Y-%m-%d")
                history_dict[date_key] = h.elo_score
            
            # Fill in missing dates with the previous score
            last_score = model.current_elo  # Default to current ELO if no history
            scores = []
            
            for date in formatted_elo_dates:
                if date in history_dict:
                    last_score = history_dict[date]
                scores.append(last_score)
            
            model_history[model.name]["scores"] = scores
        else:
            # If no history, use the current Elo for all dates
            model_history[model.name]["scores"] = [model.current_elo] * len(formatted_elo_dates)
    
    chart_data = {
        "dailyVotes": {
            "labels": formatted_dates,
            "ttsCounts": tts_counts,
            "convCounts": conv_counts
        },
        "monthlyUsers": {
            "labels": monthly_labels,
            "counts": monthly_counts
        },
        "modelHistory": model_history
    }
    
    return render_template(
        "admin/statistics.html",
        chart_data=json.dumps(chart_data)
    )

@admin.route("/activity")
@admin_required
def activity():
    """View recent text generations"""
    # Check if we have any active sessions from app.py
    tts_session_count = 0
    conversational_session_count = 0
    
    # Access global variables from app.py through current_app
    if hasattr(current_app, 'tts_sessions'):
        tts_session_count = len(current_app.tts_sessions)
    else:  # Try to access through app module
        from app import tts_sessions
        tts_session_count = len(tts_sessions)
    
    if hasattr(current_app, 'conversational_sessions'):
        conversational_session_count = len(current_app.conversational_sessions)
    else:  # Try to access through app module
        from app import conversational_sessions
        conversational_session_count = len(conversational_sessions)
    
    # Get recent votes which represent completed generations
    recent_tts_votes = Vote.query.filter_by(
        model_type=ModelType.TTS
    ).order_by(Vote.vote_date.desc()).limit(20).all()
    
    recent_conv_votes = Vote.query.filter_by(
        model_type=ModelType.CONVERSATIONAL
    ).order_by(Vote.vote_date.desc()).limit(20).all()
    
    # Get votes per hour for the last 24 hours
    current_time = datetime.utcnow()
    last_24h = current_time.replace(minute=0, second=0, microsecond=0) - timedelta(hours=24)
    
    # Use SQLite-compatible date formatting
    hourly_votes = db.session.query(
        func.strftime('%Y-%m-%d %H:00', Vote.vote_date).label('hour'),
        func.count().label('count')
    ).filter(
        Vote.vote_date >= last_24h
    ).group_by('hour').order_by('hour').all()
    
    # Generate all hours for the past 24 hours with correct hour formatting
    hour_list = []
    for i in range(24, -1, -1):
        # Calculate the hour time and truncate to hour
        hour_time = current_time - timedelta(hours=i)
        hour_time = hour_time.replace(minute=0, second=0, microsecond=0)
        hour_list.append(hour_time.strftime('%Y-%m-%d %H:00'))
    
    # Create a dictionary with actual vote counts
    vote_counts = {hour.hour: hour.count for hour in hourly_votes}
    
    # Build complete hourly datasets including hours with zero votes
    hourly_data = {
        "labels": hour_list,
        "counts": [vote_counts.get(hour, 0) for hour in hour_list]
    }
    
    return render_template(
        "admin/activity.html",
        tts_session_count=tts_session_count,
        conversational_session_count=conversational_session_count,
        recent_tts_votes=recent_tts_votes,
        recent_conv_votes=recent_conv_votes,
        hourly_data=json.dumps(hourly_data)
    )

@admin.route("/analytics")
@admin_required
def analytics():
    """View analytics data including session duration, IP addresses, etc."""
    
    # Get analytics statistics
    analytics_stats = {}
    
    try:
        # Session duration statistics
        duration_stats = db.session.execute(text("""
            SELECT 
                AVG(session_duration_seconds) as avg_duration,
                MIN(session_duration_seconds) as min_duration,
                MAX(session_duration_seconds) as max_duration,
                COUNT(session_duration_seconds) as total_with_duration
            FROM vote 
            WHERE session_duration_seconds IS NOT NULL
        """)).fetchone()
        
        analytics_stats['duration'] = {
            'avg': round(duration_stats.avg_duration, 2) if duration_stats.avg_duration else 0,
            'min': round(duration_stats.min_duration, 2) if duration_stats.min_duration else 0,
            'max': round(duration_stats.max_duration, 2) if duration_stats.max_duration else 0,
            'total': duration_stats.total_with_duration or 0
        }
        
        # Cache hit statistics
        cache_stats = db.session.execute(text("""
            SELECT 
                cache_hit,
                COUNT(*) as count
            FROM vote 
            WHERE cache_hit IS NOT NULL
            GROUP BY cache_hit
        """)).fetchall()
        
        analytics_stats['cache'] = {
            'hits': 0,
            'misses': 0,
            'total': 0
        }
        
        for stat in cache_stats:
            if stat.cache_hit:
                analytics_stats['cache']['hits'] = stat.count
            else:
                analytics_stats['cache']['misses'] = stat.count
            analytics_stats['cache']['total'] += stat.count
        
        # Top IP address regions (anonymized)
        ip_stats = db.session.execute(text("""
            SELECT 
                ip_address_partial,
                COUNT(*) as count
            FROM vote 
            WHERE ip_address_partial IS NOT NULL
            GROUP BY ip_address_partial
            ORDER BY count DESC
            LIMIT 10
        """)).fetchall()
        
        analytics_stats['top_ips'] = [
            {'ip': stat.ip_address_partial, 'count': stat.count}
            for stat in ip_stats
        ]
        
        # User agent statistics (top browsers/devices)
        ua_stats = db.session.execute(text("""
            SELECT 
                CASE 
                    WHEN user_agent LIKE '%Chrome%' THEN 'Chrome'
                    WHEN user_agent LIKE '%Firefox%' THEN 'Firefox'
                    WHEN user_agent LIKE '%Safari%' AND user_agent NOT LIKE '%Chrome%' THEN 'Safari'
                    WHEN user_agent LIKE '%Edge%' THEN 'Edge'
                    WHEN user_agent LIKE '%Mobile%' OR user_agent LIKE '%Android%' THEN 'Mobile'
                    ELSE 'Other'
                END as browser,
                COUNT(*) as count
            FROM vote 
            WHERE user_agent IS NOT NULL
            GROUP BY browser
            ORDER BY count DESC
        """)).fetchall()
        
        analytics_stats['browsers'] = [
            {'browser': stat.browser, 'count': stat.count}
            for stat in ua_stats
        ]
        
        # Recent votes with analytics data
        recent_analytics = db.session.execute(text("""
            SELECT 
                v.id,
                v.vote_date,
                v.session_duration_seconds,
                v.ip_address_partial,
                v.cache_hit,
                v.model_type,
                u.username,
                m1.name as chosen_model,
                m2.name as rejected_model
            FROM vote v
            LEFT JOIN user u ON v.user_id = u.id
            LEFT JOIN model m1 ON v.model_chosen = m1.id
            LEFT JOIN model m2 ON v.model_rejected = m2.id
            WHERE v.session_duration_seconds IS NOT NULL
            ORDER BY v.vote_date DESC
            LIMIT 20
        """)).fetchall()
        
        analytics_stats['recent_votes'] = [
            {
                'id': vote.id,
                'vote_date': vote.vote_date,
                'duration': round(vote.session_duration_seconds, 2) if vote.session_duration_seconds else None,
                'ip': vote.ip_address_partial,
                'cache_hit': vote.cache_hit,
                'model_type': vote.model_type,
                'username': vote.username,
                'chosen_model': vote.chosen_model,
                'rejected_model': vote.rejected_model
            }
            for vote in recent_analytics
        ]
        
    except Exception as e:
        flash(f"Error retrieving analytics data: {str(e)}", "error")
        analytics_stats = {}
    
    return render_template(
        "admin/analytics.html", 
        analytics_stats=analytics_stats
    )

@admin.route("/security")
@admin_required
def security():
    """View security monitoring data and suspicious activity."""
    try:
        from security import (
            detect_suspicious_voting_patterns, 
            detect_coordinated_voting, 
            check_user_security_score,
            detect_model_bias
        )
        
        # Get recent suspicious users
        recent_users = User.query.order_by(User.join_date.desc()).limit(50).all()
        suspicious_users = []
        
        for user in recent_users:
            score, factors = check_user_security_score(user.id)
            if score < 50:  # Flag users with low security scores
                suspicious_users.append({
                    'user': user,
                    'score': score,
                    'factors': factors
                })
        
        # Sort by lowest score first
        suspicious_users.sort(key=lambda x: x['score'])
        
        # Check for coordinated voting on top models
        top_models = Model.query.order_by(Model.current_elo.desc()).limit(10).all()
        coordinated_campaigns = []
        
        for model in top_models:
            is_coordinated, user_count, vote_count, suspicious_users_list = detect_coordinated_voting(model.id)
            if is_coordinated:
                coordinated_campaigns.append({
                    'model': model,
                    'user_count': user_count,
                    'vote_count': vote_count,
                    'suspicious_users': suspicious_users_list
                })
        
        # Get users with high model bias
        biased_users = []
        for model in top_models:
            # Check recent voters for this model
            recent_voters = db.session.query(Vote.user_id).filter(
                Vote.model_chosen == model.id
            ).distinct().limit(20).all()
            
            for voter in recent_voters:
                if voter.user_id:
                    is_biased, bias_ratio, votes_for_model, total_votes = detect_model_bias(
                        voter.user_id, model.id
                    )
                    if is_biased and total_votes >= 5:
                        user = User.query.get(voter.user_id)
                        if user:
                            biased_users.append({
                                'user': user,
                                'model': model,
                                'bias_ratio': bias_ratio,
                                'votes_for_model': votes_for_model,
                                'total_votes': total_votes
                            })
        
        # Remove duplicates and sort by bias ratio
        seen_users = set()
        unique_biased_users = []
        for item in biased_users:
            user_model_key = (item['user'].id, item['model'].id)
            if user_model_key not in seen_users:
                seen_users.add(user_model_key)
                unique_biased_users.append(item)
        
        unique_biased_users.sort(key=lambda x: x['bias_ratio'], reverse=True)
        
        # Get recent security blocks from logs (if available)
        security_blocks = []
        try:
            # This would require parsing application logs
            # For now, we'll show a placeholder
            pass
        except Exception:
            pass
        
        return render_template(
            "admin/security.html",
            suspicious_users=suspicious_users[:20],  # Limit to top 20
            coordinated_campaigns=coordinated_campaigns,
            biased_users=unique_biased_users[:20],  # Limit to top 20
            security_blocks=security_blocks
        )
        
    except ImportError:
        flash("Security module not available", "error")
        return redirect(url_for("admin.index"))
    except Exception as e:
        flash(f"Error loading security data: {str(e)}", "error")
        return redirect(url_for("admin.index"))