Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
DESCR = """
|
| 2 |
# TTS Arena
|
| 3 |
|
|
@@ -14,21 +26,26 @@ INSTR = """
|
|
| 14 |
|
| 15 |
**When you're ready to begin, click the Start button below!** The model names will be revealed once you vote.
|
| 16 |
""".strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
LDESC = """
|
| 18 |
## Leaderboard
|
| 19 |
|
| 20 |
A list of the models, based on how highly they are ranked!
|
| 21 |
""".strip()
|
| 22 |
-
|
| 23 |
-
import random
|
| 24 |
-
import os
|
| 25 |
-
import shutil
|
| 26 |
-
import pandas as pd
|
| 27 |
-
import sqlite3
|
| 28 |
-
from datasets import load_dataset
|
| 29 |
-
import threading
|
| 30 |
-
import time
|
| 31 |
-
from huggingface_hub import HfApi
|
| 32 |
|
| 33 |
dataset = load_dataset("ttseval/tts-arena", token=os.getenv('HF_TOKEN'))
|
| 34 |
theme = gr.themes.Base(
|
|
@@ -164,7 +181,7 @@ def reload(chosenmodel1=None, chosenmodel2=None):
|
|
| 164 |
with gr.Blocks() as leaderboard:
|
| 165 |
gr.Markdown(LDESC)
|
| 166 |
# df = gr.Dataframe(interactive=False, value=get_data())
|
| 167 |
-
df = gr.Dataframe(interactive=False)
|
| 168 |
leaderboard.load(get_data, outputs=[df])
|
| 169 |
with gr.Blocks() as vote:
|
| 170 |
gr.Markdown(INSTR)
|
|
@@ -208,9 +225,12 @@ with gr.Blocks() as vote:
|
|
| 208 |
bothgood.click(both_good, outputs=outputs, inputs=[model1, model2])
|
| 209 |
|
| 210 |
vote.load(reload, outputs=[aud1, aud2, model1, model2])
|
|
|
|
|
|
|
|
|
|
| 211 |
with gr.Blocks(theme=theme, css="footer {visibility: hidden}", title="TTS Leaderboard") as demo:
|
| 212 |
gr.Markdown(DESCR)
|
| 213 |
-
gr.TabbedInterface([vote, leaderboard], ['Vote', 'Leaderboard'])
|
| 214 |
def restart_space():
|
| 215 |
api = HfApi(
|
| 216 |
token=os.getenv('HF_TOKEN')
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import random
|
| 3 |
+
import os
|
| 4 |
+
import shutil
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import sqlite3
|
| 7 |
+
from datasets import load_dataset
|
| 8 |
+
import threading
|
| 9 |
+
import time
|
| 10 |
+
from huggingface_hub import HfApi
|
| 11 |
+
|
| 12 |
+
|
| 13 |
DESCR = """
|
| 14 |
# TTS Arena
|
| 15 |
|
|
|
|
| 26 |
|
| 27 |
**When you're ready to begin, click the Start button below!** The model names will be revealed once you vote.
|
| 28 |
""".strip()
|
| 29 |
+
request = ''
|
| 30 |
+
if os.getenv('HF_ID'):
|
| 31 |
+
request = """
|
| 32 |
+
### Request Model
|
| 33 |
+
|
| 34 |
+
Please fill out [this form](https://huggingface.co/spaces/{os.getenv('HF_ID')}/discussions/new?title=%5BModel+Request%5D+&description=%23%23%20Model%20Request%0A%0A%2A%2AModel%20website%2Fpaper%20%28if%20applicable%29%2A%2A%3A%0A%2A%2AModel%20available%20on%2A%2A%3A%20%28coqui%7CHF%20pipeline%7Ccustom%20code%29%0A%2A%2AWhy%20do%20you%20want%20this%20model%20added%3F%2A%2A%0A%2A%2AComments%3A%2A%2A) to request a model.
|
| 35 |
+
"""
|
| 36 |
+
ABOUT = f"""
|
| 37 |
+
## About
|
| 38 |
+
|
| 39 |
+
TTS Arena is a project created to evaluate leading speech synthesis models. It is inspired by the [Chatbot Arena](https://chat.lmsys.org/) by LMSys.
|
| 40 |
+
|
| 41 |
+
{request}
|
| 42 |
+
""".strip()
|
| 43 |
LDESC = """
|
| 44 |
## Leaderboard
|
| 45 |
|
| 46 |
A list of the models, based on how highly they are ranked!
|
| 47 |
""".strip()
|
| 48 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
dataset = load_dataset("ttseval/tts-arena", token=os.getenv('HF_TOKEN'))
|
| 51 |
theme = gr.themes.Base(
|
|
|
|
| 181 |
with gr.Blocks() as leaderboard:
|
| 182 |
gr.Markdown(LDESC)
|
| 183 |
# df = gr.Dataframe(interactive=False, value=get_data())
|
| 184 |
+
df = gr.Dataframe(interactive=False, min_width=0, wrap=True, column_widths=[200, 50, 50])
|
| 185 |
leaderboard.load(get_data, outputs=[df])
|
| 186 |
with gr.Blocks() as vote:
|
| 187 |
gr.Markdown(INSTR)
|
|
|
|
| 225 |
bothgood.click(both_good, outputs=outputs, inputs=[model1, model2])
|
| 226 |
|
| 227 |
vote.load(reload, outputs=[aud1, aud2, model1, model2])
|
| 228 |
+
with gr.Blocks() as about:
|
| 229 |
+
gr.Markdown(ABOUT)
|
| 230 |
+
pass
|
| 231 |
with gr.Blocks(theme=theme, css="footer {visibility: hidden}", title="TTS Leaderboard") as demo:
|
| 232 |
gr.Markdown(DESCR)
|
| 233 |
+
gr.TabbedInterface([vote, leaderboard, about], ['Vote', 'Leaderboard', 'About'])
|
| 234 |
def restart_space():
|
| 235 |
api = HfApi(
|
| 236 |
token=os.getenv('HF_TOKEN')
|