Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
# from dotenv import load_dotenv
|
3 |
+
import os
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
import pandas as pd
|
6 |
+
import sqlite3
|
7 |
+
|
8 |
+
# load_dotenv()
|
9 |
+
|
10 |
+
DB_DATASET_ID = os.getenv("DB_DATASET_ID")
|
11 |
+
DB_NAME = os.getenv("DB_NAME")
|
12 |
+
|
13 |
+
cache_path = hf_hub_download(repo_id=DB_DATASET_ID, repo_type='dataset', filename=DB_NAME, token=os.getenv("HF_TOKEN"))
|
14 |
+
|
15 |
+
# Model name mappings and metadata
|
16 |
+
|
17 |
+
closed_source = [
|
18 |
+
'ElevenLabs',
|
19 |
+
'Play.HT 2.0',
|
20 |
+
'Play.HT 3.0 Mini',
|
21 |
+
'PlayDialog',
|
22 |
+
'Papla P1',
|
23 |
+
'Hume Octave'
|
24 |
+
]
|
25 |
+
|
26 |
+
# Model name mapping, can include models that users cannot vote on
|
27 |
+
model_names = {
|
28 |
+
'styletts2': 'StyleTTS 2',
|
29 |
+
'tacotron': 'Tacotron',
|
30 |
+
'tacotronph': 'Tacotron Phoneme',
|
31 |
+
'tacotrondca': 'Tacotron DCA',
|
32 |
+
'speedyspeech': 'Speedy Speech',
|
33 |
+
'overflow': 'Overflow TTS',
|
34 |
+
'anonymoussparkle': 'Anonymous Sparkle',
|
35 |
+
'vits': 'VITS',
|
36 |
+
'vitsneon': 'VITS Neon',
|
37 |
+
'neuralhmm': 'Neural HMM',
|
38 |
+
'glow': 'Glow TTS',
|
39 |
+
'fastpitch': 'FastPitch',
|
40 |
+
'jenny': 'Jenny',
|
41 |
+
'tortoise': 'Tortoise TTS',
|
42 |
+
'xtts2': 'Coqui XTTSv2',
|
43 |
+
'xtts': 'Coqui XTTS',
|
44 |
+
'openvoice': 'MyShell OpenVoice',
|
45 |
+
'elevenlabs': 'ElevenLabs',
|
46 |
+
'openai': 'OpenAI',
|
47 |
+
'hierspeech': 'HierSpeech++',
|
48 |
+
'pheme': 'PolyAI Pheme',
|
49 |
+
'speecht5': 'SpeechT5',
|
50 |
+
'metavoice': 'MetaVoice-1B',
|
51 |
+
}
|
52 |
+
model_links = {
|
53 |
+
'ElevenLabs': 'https://elevenlabs.io/',
|
54 |
+
'Play.HT 2.0': 'https://play.ht/',
|
55 |
+
'Play.HT 3.0 Mini': 'https://play.ht/',
|
56 |
+
'XTTSv2': 'https://huggingface.co/coqui/XTTS-v2',
|
57 |
+
'MeloTTS': 'https://github.com/myshell-ai/MeloTTS',
|
58 |
+
'StyleTTS 2': 'https://github.com/yl4579/StyleTTS2',
|
59 |
+
'Parler TTS Large': 'https://github.com/huggingface/parler-tts',
|
60 |
+
'Parler TTS': 'https://github.com/huggingface/parler-tts',
|
61 |
+
'Fish Speech v1.5': 'https://github.com/fishaudio/fish-speech',
|
62 |
+
'Fish Speech v1.4': 'https://github.com/fishaudio/fish-speech',
|
63 |
+
'GPT-SoVITS': 'https://github.com/RVC-Boss/GPT-SoVITS',
|
64 |
+
'WhisperSpeech': 'https://github.com/WhisperSpeech/WhisperSpeech',
|
65 |
+
'VoiceCraft 2.0': 'https://github.com/jasonppy/VoiceCraft',
|
66 |
+
'PlayDialog': 'https://play.ht/',
|
67 |
+
'Kokoro v0.19': 'https://huggingface.co/hexgrad/Kokoro-82M',
|
68 |
+
'Kokoro v1.0': 'https://huggingface.co/hexgrad/Kokoro-82M',
|
69 |
+
'CosyVoice 2.0': 'https://github.com/FunAudioLLM/CosyVoice',
|
70 |
+
'MetaVoice': 'https://github.com/metavoiceio/metavoice-src',
|
71 |
+
'OpenVoice': 'https://github.com/myshell-ai/OpenVoice',
|
72 |
+
'OpenVoice V2': 'https://github.com/myshell-ai/OpenVoice',
|
73 |
+
'Pheme': 'https://github.com/PolyAI-LDN/pheme',
|
74 |
+
'Vokan TTS': 'https://huggingface.co/ShoukanLabs/Vokan',
|
75 |
+
'Papla P1': 'https://papla.media',
|
76 |
+
'Hume Octave': 'https://www.hume.ai'
|
77 |
+
}
|
78 |
+
|
79 |
+
|
80 |
+
def get_db():
|
81 |
+
conn = sqlite3.connect(cache_path)
|
82 |
+
return conn
|
83 |
+
|
84 |
+
def get_leaderboard(reveal_prelim=False, hide_battle_votes=False, sort_by_elo=True, hide_proprietary=False):
|
85 |
+
conn = get_db()
|
86 |
+
cursor = conn.cursor()
|
87 |
+
|
88 |
+
if hide_battle_votes:
|
89 |
+
sql = '''
|
90 |
+
SELECT m.name,
|
91 |
+
SUM(CASE WHEN v.username NOT LIKE '%_battle' AND v.vote = 1 THEN 1 ELSE 0 END) as upvote,
|
92 |
+
SUM(CASE WHEN v.username NOT LIKE '%_battle' AND v.vote = -1 THEN 1 ELSE 0 END) as downvote
|
93 |
+
FROM model m
|
94 |
+
LEFT JOIN vote v ON m.name = v.model
|
95 |
+
GROUP BY m.name
|
96 |
+
'''
|
97 |
+
else:
|
98 |
+
sql = '''
|
99 |
+
SELECT name,
|
100 |
+
SUM(CASE WHEN vote = 1 THEN 1 ELSE 0 END) as upvote,
|
101 |
+
SUM(CASE WHEN vote = -1 THEN 1 ELSE 0 END) as downvote
|
102 |
+
FROM model
|
103 |
+
LEFT JOIN vote ON model.name = vote.model
|
104 |
+
GROUP BY name
|
105 |
+
'''
|
106 |
+
|
107 |
+
cursor.execute(sql)
|
108 |
+
data = cursor.fetchall()
|
109 |
+
df = pd.DataFrame(data, columns=['name', 'upvote', 'downvote'])
|
110 |
+
df['name'] = df['name'].replace(model_names).replace('Anonymous Sparkle', 'Fish Speech v1.5')
|
111 |
+
|
112 |
+
# Calculate total votes and win rate
|
113 |
+
df['votes'] = df['upvote'] + df['downvote']
|
114 |
+
df['win_rate'] = (df['upvote'] / df['votes'] * 100).round(1)
|
115 |
+
|
116 |
+
# Remove models with no votes
|
117 |
+
df = df[df['votes'] > 0]
|
118 |
+
|
119 |
+
# Filter out rows with insufficient votes if not revealing preliminary results
|
120 |
+
if not reveal_prelim:
|
121 |
+
df = df[df['votes'] > 500]
|
122 |
+
|
123 |
+
## Calculate ELO SCORE (kept as secondary metric)
|
124 |
+
df['elo'] = 1200
|
125 |
+
for i in range(len(df)):
|
126 |
+
for j in range(len(df)):
|
127 |
+
if i != j:
|
128 |
+
try:
|
129 |
+
expected_a = 1 / (1 + 10 ** ((df['elo'].iloc[j] - df['elo'].iloc[i]) / 400))
|
130 |
+
expected_b = 1 / (1 + 10 ** ((df['elo'].iloc[i] - df['elo'].iloc[j]) / 400))
|
131 |
+
actual_a = df['upvote'].iloc[i] / df['votes'].iloc[i] if df['votes'].iloc[i] > 0 else 0.5
|
132 |
+
actual_b = df['upvote'].iloc[j] / df['votes'].iloc[j] if df['votes'].iloc[j] > 0 else 0.5
|
133 |
+
df.iloc[i, df.columns.get_loc('elo')] += 32 * (actual_a - expected_a)
|
134 |
+
df.iloc[j, df.columns.get_loc('elo')] += 32 * (actual_b - expected_b)
|
135 |
+
except Exception as e:
|
136 |
+
print(f"Error in ELO calculation for rows {i} and {j}: {str(e)}")
|
137 |
+
continue
|
138 |
+
df['elo'] = round(df['elo'])
|
139 |
+
|
140 |
+
# Sort based on user preference
|
141 |
+
sort_column = 'elo' if sort_by_elo else 'win_rate'
|
142 |
+
df = df.sort_values(by=sort_column, ascending=False)
|
143 |
+
df['order'] = ['#' + str(i + 1) for i in range(len(df))]
|
144 |
+
|
145 |
+
# Select and order columns for display
|
146 |
+
df = df[['order', 'name', 'win_rate', 'votes', 'elo']]
|
147 |
+
|
148 |
+
# Remove proprietary models if filter is enabled
|
149 |
+
if hide_proprietary:
|
150 |
+
df = df[~df['name'].isin(closed_source)]
|
151 |
+
|
152 |
+
# Convert DataFrame to markdown table with CSS styling
|
153 |
+
markdown_table = """
|
154 |
+
<style>
|
155 |
+
/* Reset any Gradio table styles */
|
156 |
+
.leaderboard-table,
|
157 |
+
.leaderboard-table th,
|
158 |
+
.leaderboard-table td {
|
159 |
+
border: none !important;
|
160 |
+
border-collapse: separate !important;
|
161 |
+
border-spacing: 0 !important;
|
162 |
+
}
|
163 |
+
|
164 |
+
.leaderboard-container {
|
165 |
+
background: var(--background-fill-primary);
|
166 |
+
border: 1px solid var(--border-color-primary);
|
167 |
+
border-radius: 12px;
|
168 |
+
padding: 4px;
|
169 |
+
margin: 10px 0;
|
170 |
+
width: 100%;
|
171 |
+
overflow-x: auto; /* Enable horizontal scroll */
|
172 |
+
}
|
173 |
+
|
174 |
+
.leaderboard-scroll {
|
175 |
+
max-height: 600px;
|
176 |
+
overflow-y: auto;
|
177 |
+
border-radius: 8px;
|
178 |
+
}
|
179 |
+
|
180 |
+
.leaderboard-table {
|
181 |
+
width: 100%;
|
182 |
+
border-spacing: 0;
|
183 |
+
border-collapse: separate;
|
184 |
+
font-size: 15px;
|
185 |
+
line-height: 1.5;
|
186 |
+
table-layout: auto; /* Allow flexible column widths */
|
187 |
+
}
|
188 |
+
|
189 |
+
.leaderboard-table th {
|
190 |
+
background: var(--background-fill-secondary);
|
191 |
+
color: var(--body-text-color);
|
192 |
+
font-weight: 600;
|
193 |
+
text-align: left;
|
194 |
+
padding: 12px 16px;
|
195 |
+
position: sticky;
|
196 |
+
top: 0;
|
197 |
+
z-index: 1;
|
198 |
+
}
|
199 |
+
|
200 |
+
.leaderboard-table th:after {
|
201 |
+
content: '';
|
202 |
+
position: absolute;
|
203 |
+
left: 0;
|
204 |
+
bottom: 0;
|
205 |
+
width: 100%;
|
206 |
+
border-bottom: 1px solid var(--border-color-primary);
|
207 |
+
}
|
208 |
+
|
209 |
+
.leaderboard-table td {
|
210 |
+
padding: 12px 16px;
|
211 |
+
color: var(--body-text-color);
|
212 |
+
}
|
213 |
+
|
214 |
+
.leaderboard-table tr td {
|
215 |
+
border-bottom: 1px solid var(--border-color-primary);
|
216 |
+
}
|
217 |
+
|
218 |
+
.leaderboard-table tr:last-child td {
|
219 |
+
border-bottom: none;
|
220 |
+
}
|
221 |
+
|
222 |
+
.leaderboard-table tr:hover td {
|
223 |
+
background: var(--background-fill-secondary);
|
224 |
+
}
|
225 |
+
|
226 |
+
/* Column-specific styles */
|
227 |
+
.leaderboard-table .col-rank {
|
228 |
+
width: 70px;
|
229 |
+
min-width: 70px; /* Prevent rank from shrinking */
|
230 |
+
}
|
231 |
+
|
232 |
+
.leaderboard-table .col-model {
|
233 |
+
min-width: 200px; /* Minimum width before scrolling */
|
234 |
+
}
|
235 |
+
|
236 |
+
.leaderboard-table .col-winrate {
|
237 |
+
width: 100px;
|
238 |
+
min-width: 100px; /* Prevent win rate from shrinking */
|
239 |
+
}
|
240 |
+
|
241 |
+
.leaderboard-table .col-votes {
|
242 |
+
width: 100px;
|
243 |
+
min-width: 100px; /* Prevent votes from shrinking */
|
244 |
+
}
|
245 |
+
|
246 |
+
.leaderboard-table .col-arena {
|
247 |
+
width: 100px;
|
248 |
+
min-width: 100px; /* Prevent arena score from shrinking */
|
249 |
+
}
|
250 |
+
|
251 |
+
.win-rate {
|
252 |
+
display: inline-block;
|
253 |
+
font-weight: 600;
|
254 |
+
padding: 4px 8px;
|
255 |
+
border-radius: 6px;
|
256 |
+
min-width: 65px;
|
257 |
+
text-align: center;
|
258 |
+
}
|
259 |
+
|
260 |
+
.win-rate-excellent {
|
261 |
+
background-color: var(--color-accent);
|
262 |
+
color: var(--color-accent-foreground);
|
263 |
+
}
|
264 |
+
|
265 |
+
.win-rate-good {
|
266 |
+
background-color: var(--color-accent-soft);
|
267 |
+
color: var(--body-text-color);
|
268 |
+
}
|
269 |
+
|
270 |
+
.win-rate-average {
|
271 |
+
background-color: var(--background-fill-secondary);
|
272 |
+
color: var(--body-text-color);
|
273 |
+
border: 1px solid var(--border-color-primary);
|
274 |
+
}
|
275 |
+
|
276 |
+
.win-rate-below {
|
277 |
+
background-color: var(--error-background-fill);
|
278 |
+
color: var(--body-text-color);
|
279 |
+
}
|
280 |
+
|
281 |
+
.model-link {
|
282 |
+
color: var(--body-text-color) !important;
|
283 |
+
text-decoration: none !important;
|
284 |
+
border-bottom: 2px dashed rgba(128, 128, 128, 0.3);
|
285 |
+
}
|
286 |
+
|
287 |
+
.model-link:hover {
|
288 |
+
color: var(--color-accent) !important;
|
289 |
+
border-bottom-color: var(--color-accent) !important;
|
290 |
+
}
|
291 |
+
|
292 |
+
.proprietary-badge {
|
293 |
+
display: inline-block;
|
294 |
+
font-size: 12px;
|
295 |
+
padding: 2px 6px;
|
296 |
+
border-radius: 4px;
|
297 |
+
background-color: var(--background-fill-secondary);
|
298 |
+
color: var(--body-text-color);
|
299 |
+
margin-left: 6px;
|
300 |
+
border: 1px solid var(--border-color-primary);
|
301 |
+
}
|
302 |
+
|
303 |
+
/* New Arena V2 Pointer */
|
304 |
+
.arena-v2-pointer {
|
305 |
+
display: block;
|
306 |
+
margin: 20px auto;
|
307 |
+
padding: 20px;
|
308 |
+
text-align: center;
|
309 |
+
border-radius: 12px;
|
310 |
+
font-size: 20px;
|
311 |
+
font-weight: bold;
|
312 |
+
cursor: pointer;
|
313 |
+
transition: all 0.3s ease;
|
314 |
+
position: relative;
|
315 |
+
overflow: hidden;
|
316 |
+
text-decoration: none !important;
|
317 |
+
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
|
318 |
+
max-width: 800px;
|
319 |
+
background: linear-gradient(135deg, #FF7B00, #FF5500);
|
320 |
+
color: white !important;
|
321 |
+
border: none;
|
322 |
+
}
|
323 |
+
|
324 |
+
/* Dark mode adjustments */
|
325 |
+
@media (prefers-color-scheme: dark) {
|
326 |
+
.arena-v2-pointer {
|
327 |
+
box-shadow: 0 4px 20px rgba(255, 123, 0, 0.3);
|
328 |
+
}
|
329 |
+
}
|
330 |
+
|
331 |
+
.arena-v2-pointer:hover {
|
332 |
+
transform: translateY(-5px);
|
333 |
+
box-shadow: 0 7px 25px rgba(255, 123, 0, 0.4);
|
334 |
+
filter: brightness(1.05);
|
335 |
+
color: white !important;
|
336 |
+
text-decoration: none !important;
|
337 |
+
}
|
338 |
+
|
339 |
+
.arena-v2-pointer::after {
|
340 |
+
content: "→";
|
341 |
+
font-size: 24px;
|
342 |
+
margin-left: 10px;
|
343 |
+
display: inline-block;
|
344 |
+
transition: transform 0.3s ease;
|
345 |
+
}
|
346 |
+
|
347 |
+
.arena-v2-pointer:hover::after {
|
348 |
+
transform: translateX(5px);
|
349 |
+
}
|
350 |
+
</style>
|
351 |
+
|
352 |
+
<a href="https://huggingface.co/spaces/TTS-AGI/TTS-Arena-V2" class="arena-v2-pointer" target="_blank">
|
353 |
+
Visit the new TTS Arena V2 to vote on the latest models!
|
354 |
+
</a>
|
355 |
+
|
356 |
+
<div class="leaderboard-container">
|
357 |
+
<div class="leaderboard-scroll">
|
358 |
+
<table class="leaderboard-table">
|
359 |
+
<thead>
|
360 |
+
<tr>
|
361 |
+
<th class="col-rank">Rank</th>
|
362 |
+
<th class="col-model">Model</th>
|
363 |
+
<th class="col-winrate">Win Rate</th>
|
364 |
+
<th class="col-votes">Votes</th>
|
365 |
+
""" + ("""<th class="col-arena">Arena Score</th>""" if sort_by_elo else "") + """
|
366 |
+
</tr>
|
367 |
+
</thead>
|
368 |
+
<tbody>
|
369 |
+
"""
|
370 |
+
|
371 |
+
def get_win_rate_class(win_rate):
|
372 |
+
if win_rate >= 60:
|
373 |
+
return "win-rate-excellent"
|
374 |
+
elif win_rate >= 55:
|
375 |
+
return "win-rate-good"
|
376 |
+
elif win_rate >= 45:
|
377 |
+
return "win-rate-average"
|
378 |
+
else:
|
379 |
+
return "win-rate-below"
|
380 |
+
|
381 |
+
for _, row in df.iterrows():
|
382 |
+
win_rate_class = get_win_rate_class(row['win_rate'])
|
383 |
+
win_rate_html = f'<span class="win-rate {win_rate_class}">{row["win_rate"]}%</span>'
|
384 |
+
|
385 |
+
# Add link to model name if available and proprietary badge if closed source
|
386 |
+
model_name = row['name']
|
387 |
+
original_model_name = model_name
|
388 |
+
if model_name in model_links:
|
389 |
+
model_name = f'<a href="{model_links[model_name]}" target="_blank" class="model-link">{model_name}</a>'
|
390 |
+
|
391 |
+
if original_model_name in closed_source:
|
392 |
+
model_name += '<span class="proprietary-badge">Proprietary</span>'
|
393 |
+
|
394 |
+
markdown_table += f'''<tr>
|
395 |
+
<td class="col-rank">{row['order']}</td>
|
396 |
+
<td class="col-model">{model_name}</td>
|
397 |
+
<td class="col-winrate">{win_rate_html}</td>
|
398 |
+
<td class="col-votes">{row['votes']:,}</td>''' + (
|
399 |
+
f'''<td class="col-arena">{int(row['elo'])}</td>''' if sort_by_elo else ""
|
400 |
+
) + "</tr>\n"
|
401 |
+
|
402 |
+
markdown_table += "</tbody></table></div></div>"
|
403 |
+
return markdown_table
|
404 |
+
|
405 |
+
ABOUT = """
|
406 |
+
# TTS Arena (Legacy)
|
407 |
+
|
408 |
+
This is the legacy read-only leaderboard for TTS Arena V1. No new votes are being accepted.
|
409 |
+
|
410 |
+
**Please visit the new [TTS Arena](https://huggingface.co/spaces/TTS-AGI/TTS-Arena-V2) to vote!**
|
411 |
+
"""
|
412 |
+
|
413 |
+
CITATION_TEXT = """@misc{tts-arena,
|
414 |
+
title = {Text to Speech Arena},
|
415 |
+
author = {mrfakename and Srivastav, Vaibhav and Fourrier, Clémentine and Pouget, Lucain and Lacombe, Yoach and main and Gandhi, Sanchit},
|
416 |
+
year = 2024,
|
417 |
+
publisher = {Hugging Face},
|
418 |
+
howpublished = "\\url{https://huggingface.co/spaces/TTS-AGI/TTS-Arena}"
|
419 |
+
}"""
|
420 |
+
FOOTER = f"""
|
421 |
+
If you reference the Arena in your work, please cite it as follows:
|
422 |
+
|
423 |
+
```bibtex
|
424 |
+
{CITATION_TEXT}
|
425 |
+
```
|
426 |
+
"""
|
427 |
+
|
428 |
+
with gr.Blocks() as demo:
|
429 |
+
gr.Markdown(ABOUT)
|
430 |
+
|
431 |
+
with gr.Row():
|
432 |
+
with gr.Column():
|
433 |
+
reveal_prelim = gr.Checkbox(label="Show preliminary results (< 500 votes)", value=False)
|
434 |
+
hide_battle_votes = gr.Checkbox(label="Exclude battle votes", value=False)
|
435 |
+
with gr.Column():
|
436 |
+
sort_by_elo = gr.Checkbox(label="Sort by Arena Score instead of Win Rate", value=True)
|
437 |
+
hide_proprietary = gr.Checkbox(label="Hide proprietary models", value=False)
|
438 |
+
|
439 |
+
leaderboard_html = gr.HTML(get_leaderboard())
|
440 |
+
|
441 |
+
# Update leaderboard when filters change
|
442 |
+
for control in [reveal_prelim, hide_battle_votes, sort_by_elo, hide_proprietary]:
|
443 |
+
control.change(
|
444 |
+
fn=get_leaderboard,
|
445 |
+
inputs=[reveal_prelim, hide_battle_votes, sort_by_elo, hide_proprietary],
|
446 |
+
outputs=leaderboard_html
|
447 |
+
)
|
448 |
+
|
449 |
+
gr.Markdown(FOOTER)
|
450 |
+
|
451 |
+
demo.launch()
|