Spaces:
Running
Running
Commit
Β·
1dedb52
1
Parent(s):
16d8300
maint: iterate on the LB
Browse files- constants.py +9 -9
- main.py +140 -52
constants.py
CHANGED
@@ -1,19 +1,19 @@
|
|
1 |
class Constants:
|
2 |
col_name: str = "method_type"
|
3 |
-
automl: str = "AutoML"
|
4 |
tree: str = "Tree-based"
|
5 |
-
foundational: str = "
|
6 |
-
|
7 |
baseline: str = "Baseline"
|
|
|
8 |
other: str = "Other"
|
9 |
-
|
10 |
-
|
11 |
|
12 |
model_type_emoji = {
|
13 |
-
Constants.tree: "
|
14 |
-
Constants.foundational: "
|
15 |
-
Constants.
|
16 |
-
Constants.automl: "π€",
|
17 |
Constants.baseline: "π",
|
|
|
18 |
Constants.other: "β",
|
|
|
19 |
}
|
|
|
1 |
class Constants:
|
2 |
col_name: str = "method_type"
|
|
|
3 |
tree: str = "Tree-based"
|
4 |
+
foundational: str = "Foundation Model"
|
5 |
+
neural_network: str ="Neural Network"
|
6 |
baseline: str = "Baseline"
|
7 |
+
# Not Used
|
8 |
other: str = "Other"
|
9 |
+
automl: str = "AutoML"
|
|
|
10 |
|
11 |
model_type_emoji = {
|
12 |
+
Constants.tree: "π³",
|
13 |
+
Constants.foundational: "π§ β‘",
|
14 |
+
Constants.neural_network:"π§ π",
|
|
|
15 |
Constants.baseline: "π",
|
16 |
+
# Not used
|
17 |
Constants.other: "β",
|
18 |
+
Constants.automl: "π€",
|
19 |
}
|
main.py
CHANGED
@@ -1,33 +1,37 @@
|
|
|
|
|
|
1 |
from pathlib import Path
|
2 |
|
3 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
4 |
-
import pandas as pd
|
5 |
import gradio as gr
|
6 |
-
|
7 |
-
|
8 |
from constants import Constants, model_type_emoji
|
9 |
-
|
10 |
|
11 |
TITLE = """<h1 align="center" id="space-title">TabArena: Public leaderboard for Tabular methods</h1>"""
|
12 |
|
13 |
-
INTRODUCTION_TEXT = (
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
17 |
|
18 |
-
ABOUT_TEXT =
|
19 |
## How It Works.
|
20 |
|
21 |
-
To evaluate the leaderboard, follow install instructions in
|
22 |
-
`https://github.com/autogluon/tabrepo/tree/tabarena` and run
|
23 |
`https://github.com/autogluon/tabrepo/blob/tabarena/examples/tabarena/run_tabarena_eval.py`.
|
24 |
|
25 |
|
26 |
This will generate a leaderboard. You can add your own method and contact the authors if you want it to be added
|
27 |
-
to the leaderboard. We require method to have public code available to be considered in the leaderboard.
|
28 |
"""
|
29 |
|
30 |
-
CITATION_BUTTON_LABEL =
|
|
|
|
|
31 |
CITATION_BUTTON_TEXT = r"""
|
32 |
@article{
|
33 |
TODO update when arxiv version is ready,
|
@@ -38,11 +42,12 @@ TODO update when arxiv version is ready,
|
|
38 |
def get_model_family(model_name: str) -> str:
|
39 |
prefixes_mapping = {
|
40 |
Constants.automl: ["AutoGluon"],
|
41 |
-
Constants.
|
42 |
-
Constants.tree: ["GBM", "CAT", "EBM", "XGB"],
|
43 |
Constants.foundational: ["TABDPT", "TABICL", "TABPFN"],
|
44 |
-
Constants.baseline: ["KNN", "LR"]
|
45 |
}
|
|
|
46 |
for method_type, prefixes in prefixes_mapping.items():
|
47 |
for prefix in prefixes:
|
48 |
if prefix.lower() in model_name.lower():
|
@@ -50,76 +55,159 @@ def get_model_family(model_name: str) -> str:
|
|
50 |
return Constants.other
|
51 |
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
def load_data(filename: str):
|
54 |
df_leaderboard = pd.read_csv(Path(__file__).parent / "data" / f"{filename}.csv.zip")
|
55 |
-
print(
|
|
|
|
|
56 |
|
57 |
# sort by ELO
|
58 |
-
df_leaderboard.sort_values(by="elo", ascending=False
|
59 |
|
60 |
# add model family information
|
61 |
-
|
62 |
-
|
|
|
63 |
)
|
|
|
|
|
|
|
|
|
64 |
|
65 |
# select only the columns we want to display
|
66 |
-
df_leaderboard = df_leaderboard.loc[
|
|
|
|
|
67 |
|
68 |
# round for better display
|
69 |
df_leaderboard = df_leaderboard.round(1)
|
70 |
|
71 |
# rename some columns
|
72 |
-
df_leaderboard.rename(
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
# TODO show ELO +/- sem
|
78 |
-
|
79 |
|
80 |
|
81 |
def make_leaderboard(df_leaderboard: pd.DataFrame) -> Leaderboard:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
return Leaderboard(
|
83 |
value=df_leaderboard,
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
filter_columns=[
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
89 |
)
|
90 |
|
91 |
|
92 |
def main():
|
93 |
-
|
94 |
demo = gr.Blocks()
|
95 |
with demo:
|
96 |
gr.HTML(TITLE)
|
97 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
98 |
|
99 |
-
with gr.Tabs(elem_classes="tab-buttons")
|
100 |
-
with gr.TabItem(
|
101 |
df_leaderboard = load_data("leaderboard-all")
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=4):
|
113 |
gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
|
114 |
-
with gr.Row():
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
)
|
123 |
|
124 |
scheduler = BackgroundScheduler()
|
125 |
# scheduler.add_job(restart_space, "interval", seconds=1800)
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
from pathlib import Path
|
4 |
|
|
|
|
|
5 |
import gradio as gr
|
6 |
+
import pandas as pd
|
7 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
8 |
from constants import Constants, model_type_emoji
|
9 |
+
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
|
10 |
|
11 |
TITLE = """<h1 align="center" id="space-title">TabArena: Public leaderboard for Tabular methods</h1>"""
|
12 |
|
13 |
+
INTRODUCTION_TEXT = (
|
14 |
+
"TabArena Leaderboard measures the performance of tabular models on a collection of tabular "
|
15 |
+
"datasets manually curated. The datasets are collected to make sure they are tabular, with "
|
16 |
+
"permissive license without ethical issues and so on, we refer to the paper for a full "
|
17 |
+
"description of our approach."
|
18 |
+
)
|
19 |
|
20 |
+
ABOUT_TEXT = """
|
21 |
## How It Works.
|
22 |
|
23 |
+
To evaluate the leaderboard, follow install instructions in
|
24 |
+
`https://github.com/autogluon/tabrepo/tree/tabarena` and run
|
25 |
`https://github.com/autogluon/tabrepo/blob/tabarena/examples/tabarena/run_tabarena_eval.py`.
|
26 |
|
27 |
|
28 |
This will generate a leaderboard. You can add your own method and contact the authors if you want it to be added
|
29 |
+
to the leaderboard. We require method to have public code available to be considered in the leaderboard.
|
30 |
"""
|
31 |
|
32 |
+
CITATION_BUTTON_LABEL = (
|
33 |
+
"If you use this leaderboard in your research please cite the following:"
|
34 |
+
)
|
35 |
CITATION_BUTTON_TEXT = r"""
|
36 |
@article{
|
37 |
TODO update when arxiv version is ready,
|
|
|
42 |
def get_model_family(model_name: str) -> str:
|
43 |
prefixes_mapping = {
|
44 |
Constants.automl: ["AutoGluon"],
|
45 |
+
Constants.neural_network: ["REALMLP", "TabM", "FASTAI", "MNCA", "NN_TORCH"],
|
46 |
+
Constants.tree: ["GBM", "CAT", "EBM", "XGB", "XT", "RF"],
|
47 |
Constants.foundational: ["TABDPT", "TABICL", "TABPFN"],
|
48 |
+
Constants.baseline: ["KNN", "LR"],
|
49 |
}
|
50 |
+
|
51 |
for method_type, prefixes in prefixes_mapping.items():
|
52 |
for prefix in prefixes:
|
53 |
if prefix.lower() in model_name.lower():
|
|
|
55 |
return Constants.other
|
56 |
|
57 |
|
58 |
+
def rename_map(model_name: str) -> str:
|
59 |
+
rename_map = {
|
60 |
+
"TABM": "TabM",
|
61 |
+
"REALMLP": "RealMLP",
|
62 |
+
"GBM": "LightGBM",
|
63 |
+
"CAT": "CatBoost",
|
64 |
+
"XGB": "XGBoost",
|
65 |
+
"XT": "ExtraTrees",
|
66 |
+
"RF": "RandomForest",
|
67 |
+
"MNCA": "ModernNCA",
|
68 |
+
"NN_TORCH": "TorchMLP",
|
69 |
+
"FASTAI": "FastaiMLP",
|
70 |
+
"TABPFN": "TabPFNv2",
|
71 |
+
"EBM": "EBM",
|
72 |
+
"TABDPT": "TabDPT",
|
73 |
+
"TABICL": "TabICL",
|
74 |
+
"KNN": "KNN",
|
75 |
+
"LR": "Linear",
|
76 |
+
}
|
77 |
+
|
78 |
+
for prefix in rename_map:
|
79 |
+
if prefix in model_name:
|
80 |
+
return model_name.replace(prefix, rename_map[prefix])
|
81 |
+
|
82 |
+
return model_name
|
83 |
+
|
84 |
+
|
85 |
def load_data(filename: str):
|
86 |
df_leaderboard = pd.read_csv(Path(__file__).parent / "data" / f"{filename}.csv.zip")
|
87 |
+
print(
|
88 |
+
f"Loaded dataframe with {len(df_leaderboard)} rows and columns {df_leaderboard.columns}"
|
89 |
+
)
|
90 |
|
91 |
# sort by ELO
|
92 |
+
df_leaderboard = df_leaderboard.sort_values(by="elo", ascending=False)
|
93 |
|
94 |
# add model family information
|
95 |
+
|
96 |
+
df_leaderboard["Type"] = df_leaderboard.loc[:, "method"].apply(
|
97 |
+
lambda s: model_type_emoji[get_model_family(s)]
|
98 |
)
|
99 |
+
df_leaderboard["TypeName"] = df_leaderboard.loc[:, "method"].apply(
|
100 |
+
lambda s: get_model_family(s)
|
101 |
+
)
|
102 |
+
df_leaderboard["method"] = df_leaderboard["method"].apply(rename_map)
|
103 |
|
104 |
# select only the columns we want to display
|
105 |
+
df_leaderboard = df_leaderboard.loc[
|
106 |
+
:, ["Type", "TypeName", "method", "elo", "rank", "time_train_s", "time_infer_s"]
|
107 |
+
]
|
108 |
|
109 |
# round for better display
|
110 |
df_leaderboard = df_leaderboard.round(1)
|
111 |
|
112 |
# rename some columns
|
113 |
+
return df_leaderboard.rename(
|
114 |
+
columns={
|
115 |
+
"time_train_s": "training time (s) [β¬οΈ]",
|
116 |
+
"time_infer_s": "inference time (s) [β¬οΈ]",
|
117 |
+
"method": "Model",
|
118 |
+
"elo": "Elo [β¬οΈ]",
|
119 |
+
"rank": "Rank [β¬οΈ]",
|
120 |
+
}
|
121 |
+
)
|
122 |
|
123 |
# TODO show ELO +/- sem
|
124 |
+
# TODO: rename and re-order columns
|
125 |
|
126 |
|
127 |
def make_leaderboard(df_leaderboard: pd.DataFrame) -> Leaderboard:
|
128 |
+
df_leaderboard["TypeFiler"] = df_leaderboard["TypeName"].apply(
|
129 |
+
lambda m: f"{m} {model_type_emoji[m]}"
|
130 |
+
)
|
131 |
+
# De-selects but does not filter...
|
132 |
+
# default = df_leaderboard["TypeFiler"].unique().tolist()
|
133 |
+
# default = [(s, s) for s in default if "AutoML" not in s]
|
134 |
+
|
135 |
+
df_leaderboard["Only Default"] = df_leaderboard["Model"].str.endswith("(default)")
|
136 |
+
df_leaderboard["Only Tuned"] = df_leaderboard["Model"].str.endswith("(tuned)")
|
137 |
+
df_leaderboard["Only Tuned + Ensemble"] = df_leaderboard["Model"].str.endswith(
|
138 |
+
"(tuned + ensemble)"
|
139 |
+
) | df_leaderboard["Model"].str.endswith("(4h)")
|
140 |
+
|
141 |
return Leaderboard(
|
142 |
value=df_leaderboard,
|
143 |
+
select_columns=SelectColumns(
|
144 |
+
default_selection=list(df_leaderboard.columns),
|
145 |
+
cant_deselect=["Type", "Model"],
|
146 |
+
label="Select Columns to Display:",
|
147 |
+
),
|
148 |
+
hide_columns=[
|
149 |
+
"TypeName",
|
150 |
+
"TypeFiler",
|
151 |
+
"RefModel",
|
152 |
+
"Only Default",
|
153 |
+
"Only Tuned",
|
154 |
+
"Only Tuned + Ensemble",
|
155 |
+
],
|
156 |
+
search_columns=["Model", "Type"],
|
157 |
filter_columns=[
|
158 |
+
ColumnFilter(
|
159 |
+
"TypeFiler", type="checkboxgroup", label="Filter by Model Type"
|
160 |
+
),
|
161 |
+
ColumnFilter("Only Default", type="boolean", default=False),
|
162 |
+
ColumnFilter("Only Tuned", type="boolean", default=False),
|
163 |
+
ColumnFilter("Only Tuned + Ensemble", type="boolean", default=False),
|
164 |
+
],
|
165 |
+
bool_checkboxgroup_label="Custom Views (Exclusive, only toggle one at a time):",
|
166 |
)
|
167 |
|
168 |
|
169 |
def main():
|
|
|
170 |
demo = gr.Blocks()
|
171 |
with demo:
|
172 |
gr.HTML(TITLE)
|
173 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
174 |
|
175 |
+
with gr.Tabs(elem_classes="tab-buttons"):
|
176 |
+
with gr.TabItem("π
Overall", elem_id="llm-benchmark-tab-table", id=2):
|
177 |
df_leaderboard = load_data("leaderboard-all")
|
178 |
+
make_leaderboard(df_leaderboard)
|
179 |
+
|
180 |
+
# TODO: decide on which subsets we want to support here.
|
181 |
+
# with gr.TabItem('π
Regression', elem_id="llm-benchmark-tab-table", id=0):
|
182 |
+
# df_leaderboard = load_data("leaderboard-regression")
|
183 |
+
# leaderboard = make_leaderboard(df_leaderboard)
|
184 |
+
#
|
185 |
+
# with gr.TabItem('π
Classification', elem_id="llm-benchmark-tab-table", id=1):
|
186 |
+
# df_leaderboard = load_data("leaderboard-classification")
|
187 |
+
# leaderboard = make_leaderboard(df_leaderboard)
|
188 |
+
#
|
189 |
+
# with gr.TabItem('π
Classification', elem_id="llm-benchmark-tab-table", id=1):
|
190 |
+
# df_leaderboard = load_data("leaderboard-classification")
|
191 |
+
# leaderboard = make_leaderboard(df_leaderboard)
|
192 |
+
#
|
193 |
+
# with gr.TabItem('π
TabPFNv2-Compatible', elem_id="llm-benchmark-tab-table", id=1):
|
194 |
+
# df_leaderboard = load_data("leaderboard-classification")
|
195 |
+
# leaderboard = make_leaderboard(df_leaderboard)
|
196 |
+
#
|
197 |
+
# with gr.TabItem('π
TabICL-Compatible', elem_id="llm-benchmark-tab-table", id=1):
|
198 |
+
# df_leaderboard = load_data("leaderboard-classification")
|
199 |
+
# leaderboard = make_leaderboard(df_leaderboard)
|
200 |
|
201 |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=4):
|
202 |
gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
|
203 |
+
with gr.Row(), gr.Accordion("π Citation", open=False):
|
204 |
+
gr.Textbox(
|
205 |
+
value=CITATION_BUTTON_TEXT,
|
206 |
+
label=CITATION_BUTTON_LABEL,
|
207 |
+
lines=20,
|
208 |
+
elem_id="citation-button",
|
209 |
+
show_copy_button=True,
|
210 |
+
)
|
|
|
211 |
|
212 |
scheduler = BackgroundScheduler()
|
213 |
# scheduler.add_job(restart_space, "interval", seconds=1800)
|