Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# import streamlit as st
|
| 2 |
+
# import os
|
| 3 |
+
# import re
|
| 4 |
+
# import torch
|
| 5 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 6 |
+
# from PyPDF2 import PdfReader
|
| 7 |
+
# from peft import get_peft_model, LoraConfig, TaskType
|
| 8 |
+
|
| 9 |
+
# # β
Fix CUDA Memory Fragmentation
|
| 10 |
+
# os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
| 11 |
+
|
| 12 |
+
# # πΉ Load IBM Granite Model with 4-bit Quantization
|
| 13 |
+
# MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"
|
| 14 |
+
# quant_config = BitsAndBytesConfig(load_in_4bit=True) # Use 4-bit quantization
|
| 15 |
+
|
| 16 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 17 |
+
|
| 18 |
+
# # β
Ensure model initialization correctly
|
| 19 |
+
# torch.cuda.empty_cache() # Clear GPU memory before loading model
|
| 20 |
+
|
| 21 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
| 22 |
+
# MODEL_NAME,
|
| 23 |
+
# quantization_config=quant_config,
|
| 24 |
+
# device_map="auto", # Auto-assign layers to available GPUs/CPUs
|
| 25 |
+
# torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 # Use FP16 if GPU is available
|
| 26 |
+
# ).to(device) # Move model to correct device
|
| 27 |
+
|
| 28 |
+
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 29 |
+
|
| 30 |
+
# # πΉ Apply LoRA Fine-Tuning Configuration
|
| 31 |
+
# lora_config = LoraConfig(
|
| 32 |
+
# r=8,
|
| 33 |
+
# lora_alpha=32,
|
| 34 |
+
# target_modules=["q_proj", "v_proj"],
|
| 35 |
+
# lora_dropout=0.1,
|
| 36 |
+
# bias="none",
|
| 37 |
+
# task_type=TaskType.CAUSAL_LM
|
| 38 |
+
# )
|
| 39 |
+
# model = get_peft_model(model, lora_config)
|
| 40 |
+
# model.eval()
|
| 41 |
+
|
| 42 |
+
# # π Function to Read & Extract Text from PDFs
|
| 43 |
+
# def read_files(file):
|
| 44 |
+
# file_context = ""
|
| 45 |
+
# reader = PdfReader(file)
|
| 46 |
+
|
| 47 |
+
# for page in reader.pages:
|
| 48 |
+
# text = page.extract_text()
|
| 49 |
+
# if text:
|
| 50 |
+
# file_context += text + "\n"
|
| 51 |
+
|
| 52 |
+
# return file_context.strip()
|
| 53 |
+
|
| 54 |
+
# # π Function to Format AI Prompts
|
| 55 |
+
# # π Function to Format AI Prompts
|
| 56 |
+
# def format_prompt(system_msg, user_msg, file_context=""):
|
| 57 |
+
# if file_context:
|
| 58 |
+
# system_msg += f" The user has provided a contract document. Use its context to generate insights, but do not repeat or summarize the document itself."
|
| 59 |
+
# return [
|
| 60 |
+
# {"role": "system", "content": system_msg},
|
| 61 |
+
# {"role": "user", "content": user_msg}
|
| 62 |
+
# ]
|
| 63 |
+
# # π Function to Generate AI Responses
|
| 64 |
+
# def generate_response(input_text, max_tokens=1000, top_p=0.9, temperature=0.7):
|
| 65 |
+
# torch.cuda.empty_cache() # β
Clear GPU memory before inference
|
| 66 |
+
|
| 67 |
+
# model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
|
| 68 |
+
|
| 69 |
+
# with torch.no_grad():
|
| 70 |
+
# output = model.generate(
|
| 71 |
+
# **model_inputs,
|
| 72 |
+
# max_new_tokens=max_tokens,
|
| 73 |
+
# do_sample=True,
|
| 74 |
+
# top_p=top_p,
|
| 75 |
+
# temperature=temperature,
|
| 76 |
+
# num_return_sequences=1,
|
| 77 |
+
# pad_token_id=tokenizer.eos_token_id
|
| 78 |
+
# )
|
| 79 |
+
|
| 80 |
+
# return tokenizer.decode(output[0], skip_special_tokens=True)
|
| 81 |
+
|
| 82 |
+
# # π Function to Clean AI Output
|
| 83 |
+
# def post_process(text):
|
| 84 |
+
# cleaned = re.sub(r'ζ₯+', '', text) # Remove unwanted symbols
|
| 85 |
+
# lines = cleaned.splitlines()
|
| 86 |
+
# unique_lines = list(dict.fromkeys([line.strip() for line in lines if line.strip()]))
|
| 87 |
+
# return "\n".join(unique_lines)
|
| 88 |
+
|
| 89 |
+
# # π Function to Handle RAG with IBM Granite & Streamlit
|
| 90 |
+
# def granite_simple(prompt, file):
|
| 91 |
+
# file_context = read_files(file) if file else ""
|
| 92 |
+
|
| 93 |
+
# system_message = "You are IBM Granite, a legal AI assistant specializing in contract analysis."
|
| 94 |
+
|
| 95 |
+
# messages = format_prompt(system_message, prompt, file_context)
|
| 96 |
+
# input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 97 |
+
|
| 98 |
+
# response = generate_response(input_text)
|
| 99 |
+
# return post_process(response)
|
| 100 |
+
|
| 101 |
+
# # πΉ Streamlit UI
|
| 102 |
+
# def main():
|
| 103 |
+
# st.set_page_config(page_title="Contract Analysis AI", page_icon="π", layout="wide")
|
| 104 |
+
|
| 105 |
+
# st.title("π AI-Powered Contract Analysis Tool")
|
| 106 |
+
# st.write("Upload a contract document (PDF) for a detailed AI-driven legal and technical analysis.")
|
| 107 |
+
|
| 108 |
+
# # πΉ Sidebar Settings
|
| 109 |
+
# with st.sidebar:
|
| 110 |
+
# st.header("βοΈ Settings")
|
| 111 |
+
# max_tokens = st.slider("Max Tokens", 50, 1000, 250, 50)
|
| 112 |
+
# top_p = st.slider("Top P (sampling)", 0.1, 1.0, 0.9, 0.1)
|
| 113 |
+
# temperature = st.slider("Temperature (creativity)", 0.1, 1.0, 0.7, 0.1)
|
| 114 |
+
|
| 115 |
+
# # πΉ File Upload Section
|
| 116 |
+
# uploaded_file = st.file_uploader("π Upload a contract document (PDF)", type="pdf")
|
| 117 |
+
|
| 118 |
+
# if uploaded_file is not None:
|
| 119 |
+
# temp_file_path = "temp_uploaded_contract.pdf"
|
| 120 |
+
# with open(temp_file_path, "wb") as f:
|
| 121 |
+
# f.write(uploaded_file.getbuffer())
|
| 122 |
+
|
| 123 |
+
# st.success("β
File uploaded successfully!")
|
| 124 |
+
|
| 125 |
+
# # πΉ User Input for Analysis
|
| 126 |
+
# user_prompt = "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
|
| 127 |
+
|
| 128 |
+
# # user_prompt = st.text_area(
|
| 129 |
+
# # "π Describe what you want to analyze:",
|
| 130 |
+
# # "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
|
| 131 |
+
# # )
|
| 132 |
+
# # with st.empty(): # This hides the text area
|
| 133 |
+
# # user_prompt = st.text_area(
|
| 134 |
+
# # "π Describe what you want to analyze:",
|
| 135 |
+
# # "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
|
| 136 |
+
# # )
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
# if st.button("π Analyze Document"):
|
| 140 |
+
# with st.spinner("Analyzing contract document... β³"):
|
| 141 |
+
# final_answer = granite_simple(user_prompt, temp_file_path)
|
| 142 |
+
|
| 143 |
+
# # πΉ Display Analysis Result
|
| 144 |
+
# st.subheader("π Analysis Result")
|
| 145 |
+
# st.write(final_answer)
|
| 146 |
+
|
| 147 |
+
# # πΉ Remove Temporary File
|
| 148 |
+
# os.remove(temp_file_path)
|
| 149 |
+
|
| 150 |
+
# # π₯ Run Streamlit App
|
| 151 |
+
# if __name__ == '__main__':
|
| 152 |
+
# main()
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
import streamlit as st
|
| 156 |
+
import os
|
| 157 |
+
import re
|
| 158 |
+
import torch
|
| 159 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 160 |
+
from PyPDF2 import PdfReader
|
| 161 |
+
from peft import get_peft_model, LoraConfig, TaskType
|
| 162 |
+
|
| 163 |
+
# β
Force CPU execution for Streamlit Cloud
|
| 164 |
+
device = torch.device("cpu")
|
| 165 |
+
|
| 166 |
+
# πΉ Load IBM Granite Model (CPU-Compatible)
|
| 167 |
+
MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"
|
| 168 |
+
|
| 169 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 170 |
+
MODEL_NAME,
|
| 171 |
+
device_map="cpu", # Force CPU execution
|
| 172 |
+
torch_dtype=torch.float32 # Use float32 since Streamlit runs on CPU
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 176 |
+
|
| 177 |
+
# πΉ Apply LoRA Fine-Tuning Configuration
|
| 178 |
+
lora_config = LoraConfig(
|
| 179 |
+
r=8,
|
| 180 |
+
lora_alpha=32,
|
| 181 |
+
target_modules=["q_proj", "v_proj"],
|
| 182 |
+
lora_dropout=0.1,
|
| 183 |
+
bias="none",
|
| 184 |
+
task_type=TaskType.CAUSAL_LM
|
| 185 |
+
)
|
| 186 |
+
model = get_peft_model(model, lora_config)
|
| 187 |
+
model.eval()
|
| 188 |
+
|
| 189 |
+
# π Function to Read & Extract Text from PDFs
|
| 190 |
+
def read_files(file):
|
| 191 |
+
file_context = ""
|
| 192 |
+
reader = PdfReader(file)
|
| 193 |
+
|
| 194 |
+
for page in reader.pages:
|
| 195 |
+
text = page.extract_text()
|
| 196 |
+
if text:
|
| 197 |
+
file_context += text + "\n"
|
| 198 |
+
|
| 199 |
+
return file_context.strip()
|
| 200 |
+
|
| 201 |
+
# π Function to Format AI Prompts
|
| 202 |
+
def format_prompt(system_msg, user_msg, file_context=""):
|
| 203 |
+
if file_context:
|
| 204 |
+
system_msg += f" The user has provided a contract document. Use its context to generate insights, but do not repeat or summarize the document itself."
|
| 205 |
+
return [
|
| 206 |
+
{"role": "system", "content": system_msg},
|
| 207 |
+
{"role": "user", "content": user_msg}
|
| 208 |
+
]
|
| 209 |
+
|
| 210 |
+
# π Function to Generate AI Responses
|
| 211 |
+
def generate_response(input_text, max_tokens=1000, top_p=0.9, temperature=0.7):
|
| 212 |
+
model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
|
| 213 |
+
|
| 214 |
+
with torch.no_grad():
|
| 215 |
+
output = model.generate(
|
| 216 |
+
**model_inputs,
|
| 217 |
+
max_new_tokens=max_tokens,
|
| 218 |
+
do_sample=True,
|
| 219 |
+
top_p=top_p,
|
| 220 |
+
temperature=temperature,
|
| 221 |
+
num_return_sequences=1,
|
| 222 |
+
pad_token_id=tokenizer.eos_token_id
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
| 226 |
+
|
| 227 |
+
# π Function to Clean AI Output
|
| 228 |
+
def post_process(text):
|
| 229 |
+
cleaned = re.sub(r'ζ₯+', '', text) # Remove unwanted symbols
|
| 230 |
+
lines = cleaned.splitlines()
|
| 231 |
+
unique_lines = list(dict.fromkeys([line.strip() for line in lines if line.strip()]))
|
| 232 |
+
return "\n".join(unique_lines)
|
| 233 |
+
|
| 234 |
+
# π Function to Handle RAG with IBM Granite & Streamlit
|
| 235 |
+
def granite_simple(prompt, file):
|
| 236 |
+
file_context = read_files(file) if file else ""
|
| 237 |
+
|
| 238 |
+
system_message = "You are IBM Granite, a legal AI assistant specializing in contract analysis."
|
| 239 |
+
|
| 240 |
+
messages = format_prompt(system_message, prompt, file_context)
|
| 241 |
+
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 242 |
+
|
| 243 |
+
response = generate_response(input_text)
|
| 244 |
+
return post_process(response)
|
| 245 |
+
|
| 246 |
+
# πΉ Streamlit UI
|
| 247 |
+
def main():
|
| 248 |
+
st.set_page_config(page_title="Contract Analysis AI", page_icon="π", layout="wide")
|
| 249 |
+
|
| 250 |
+
st.title("π AI-Powered Contract Analysis Tool")
|
| 251 |
+
st.write("Upload a contract document (PDF) for a detailed AI-driven legal and technical analysis.")
|
| 252 |
+
|
| 253 |
+
# πΉ Sidebar Settings
|
| 254 |
+
with st.sidebar:
|
| 255 |
+
st.header("βοΈ Settings")
|
| 256 |
+
max_tokens = st.slider("Max Tokens", 50, 1000, 250, 50)
|
| 257 |
+
top_p = st.slider("Top P (sampling)", 0.1, 1.0, 0.9, 0.1)
|
| 258 |
+
temperature = st.slider("Temperature (creativity)", 0.1, 1.0, 0.7, 0.1)
|
| 259 |
+
|
| 260 |
+
# πΉ File Upload Section
|
| 261 |
+
uploaded_file = st.file_uploader("π Upload a contract document (PDF)", type="pdf")
|
| 262 |
+
|
| 263 |
+
if uploaded_file is not None:
|
| 264 |
+
temp_file_path = "temp_uploaded_contract.pdf"
|
| 265 |
+
with open(temp_file_path, "wb") as f:
|
| 266 |
+
f.write(uploaded_file.getbuffer())
|
| 267 |
+
|
| 268 |
+
st.success("β
File uploaded successfully!")
|
| 269 |
+
|
| 270 |
+
# πΉ User Input for Analysis
|
| 271 |
+
user_prompt = "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."
|
| 272 |
+
|
| 273 |
+
if st.button("π Analyze Document"):
|
| 274 |
+
with st.spinner("Analyzing contract document... β³"):
|
| 275 |
+
final_answer = granite_simple(user_prompt, temp_file_path)
|
| 276 |
+
|
| 277 |
+
# πΉ Display Analysis Result
|
| 278 |
+
st.subheader("π Analysis Result")
|
| 279 |
+
st.write(final_answer)
|
| 280 |
+
|
| 281 |
+
# πΉ Remove Temporary File
|
| 282 |
+
os.remove(temp_file_path)
|
| 283 |
+
|
| 284 |
+
# π₯ Run Streamlit App
|
| 285 |
+
if __name__ == '__main__':
|
| 286 |
+
main()
|