|
#include <ATen/ATen.h> |
|
#include <ATen/AccumulateType.h> |
|
#include <ATen/cuda/CUDAContext.h> |
|
#include <ATen/cuda/Exceptions.h> |
|
|
|
|
|
|
|
#include <assert.h> |
|
|
|
#include "type_shim.h" |
|
#include "multi_tensor_apply.cuh" |
|
|
|
#define BLOCK_SIZE 512 |
|
#define ILP 4 |
|
|
|
template<typename T> |
|
__device__ __forceinline__ bool is_aligned(T* p){ |
|
return ((uint64_t)p) % (ILP*sizeof(T)) == 0; |
|
} |
|
|
|
template<typename T> |
|
__device__ __forceinline__ void load_store(T* dst, T* src, int dst_offset, int src_offset){ |
|
typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LT; |
|
((LT*)dst)[dst_offset] = ((LT*)src)[src_offset]; |
|
} |
|
|
|
typedef enum{ |
|
MOMENT_MODE_0 =0, |
|
MOMENT_MODE_1 =1 |
|
} adamMode_t; |
|
|
|
std::tuple<at::Tensor, at::Tensor> multi_tensor_l2norm_mp_cuda( |
|
int chunk_size, |
|
at::Tensor noop_flag, |
|
std::vector<std::vector<at::Tensor>> tensor_lists, |
|
at::optional<bool> per_tensor_python); |
|
|
|
using MATH_T = float; |
|
|
|
template<typename T, typename param_t> |
|
struct LAMBStage1Functor |
|
{ |
|
__device__ __forceinline__ void operator()( |
|
int chunk_size, |
|
volatile int* noop_gmem, |
|
TensorListMetadata<4>& tl, |
|
const float beta1, |
|
const float beta2, |
|
const float beta3, |
|
const int* step_ptr, |
|
const int bias_correction, |
|
const float epsilon, |
|
adamMode_t mode, |
|
const float decay, |
|
const float* global_grad_norm, |
|
const float* max_global_grad_norm, |
|
const float* found_inf, |
|
const float* inv_scale) |
|
{ |
|
if (*noop_gmem) { |
|
return; |
|
} |
|
|
|
float beta1_correction = 1.0f; |
|
float beta2_correction = 1.0f; |
|
if (bias_correction == 1) { |
|
int step = *step_ptr; |
|
beta1_correction = 1 - std::pow(beta1, step); |
|
beta2_correction = 1 - std::pow(beta2, step); |
|
} |
|
|
|
int tensor_loc = tl.block_to_tensor[blockIdx.x]; |
|
int chunk_idx = tl.block_to_chunk[blockIdx.x]; |
|
int n = tl.sizes[tensor_loc]; |
|
|
|
float clipped_global_grad_norm = (*global_grad_norm) > (*max_global_grad_norm) ? (*global_grad_norm) / (*max_global_grad_norm) : 1.0f; |
|
|
|
T* g = (T*)tl.addresses[0][tensor_loc]; |
|
g += chunk_idx*chunk_size; |
|
|
|
param_t* p = (param_t*)tl.addresses[1][tensor_loc]; |
|
p += chunk_idx*chunk_size; |
|
|
|
param_t* m = (param_t*)tl.addresses[2][tensor_loc]; |
|
m += chunk_idx*chunk_size; |
|
|
|
param_t* v = (param_t*)tl.addresses[3][tensor_loc]; |
|
v += chunk_idx*chunk_size; |
|
|
|
n -= chunk_idx*chunk_size; |
|
|
|
MATH_T r_g[ILP]; |
|
MATH_T r_p[ILP]; |
|
MATH_T r_m[ILP]; |
|
MATH_T r_v[ILP]; |
|
|
|
if(n % ILP == 0 && |
|
chunk_size % ILP == 0 && |
|
is_aligned(g) && |
|
is_aligned(p) && |
|
is_aligned(m) && |
|
is_aligned(v)) |
|
{ |
|
T l_g[ILP]; |
|
param_t l_p[ILP]; |
|
param_t l_m[ILP]; |
|
param_t l_v[ILP]; |
|
for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x) |
|
{ |
|
|
|
load_store(l_g, g, 0, i_start); |
|
if (decay != 0) |
|
load_store(l_p, p, 0, i_start); |
|
load_store(l_m, m, 0, i_start); |
|
load_store(l_v, v, 0, i_start); |
|
|
|
#pragma unroll |
|
for(int ii = 0; ii < ILP; ii++) |
|
{ |
|
r_g[ii] = l_g[ii] * (*inv_scale); |
|
if (decay == 0) { |
|
r_p[ii] = MATH_T(0); |
|
} |
|
else { |
|
r_p[ii] = l_p[ii]; |
|
} |
|
r_m[ii] = l_m[ii]; |
|
r_v[ii] = l_v[ii]; |
|
} |
|
#pragma unroll |
|
for(int ii = 0; ii < ILP; ii++) |
|
{ |
|
if (mode == MOMENT_MODE_0) { |
|
MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm; |
|
|
|
scaled_grad = scaled_grad + decay*r_p[ii]; |
|
r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad; |
|
r_v[ii] = r_v[ii] * beta2 + (1-beta2) * scaled_grad * scaled_grad; |
|
MATH_T next_m_unbiased = r_m[ii] / beta1_correction; |
|
MATH_T next_v_unbiased = r_v[ii] / beta2_correction; |
|
MATH_T denom = sqrtf(next_v_unbiased) + epsilon; |
|
r_p[ii] = next_m_unbiased / denom; |
|
} |
|
else { |
|
MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm; |
|
r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad; |
|
r_v[ii] = r_v[ii] * beta2 + (1-beta2) * scaled_grad * scaled_grad; |
|
MATH_T next_m_unbiased = r_m[ii] / beta1_correction; |
|
MATH_T next_v_unbiased = r_v[ii] / beta2_correction; |
|
MATH_T denom = sqrtf(next_v_unbiased) + epsilon; |
|
r_p[ii] = (next_m_unbiased/denom) + (decay*r_p[ii]); |
|
} |
|
} |
|
#pragma unroll |
|
for(int ii = 0; ii < ILP; ii++) |
|
{ |
|
l_p[ii] = r_p[ii]; |
|
|
|
l_g[ii] = r_p[ii]; |
|
l_m[ii] = r_m[ii]; |
|
l_v[ii] = r_v[ii]; |
|
} |
|
|
|
load_store(g, l_g, i_start, 0); |
|
load_store(m, l_m, i_start, 0); |
|
load_store(v, l_v, i_start, 0); |
|
} |
|
} |
|
else |
|
{ |
|
|
|
for(int i_start = 0; |
|
i_start < n && i_start < chunk_size; |
|
i_start += blockDim.x*ILP) |
|
{ |
|
MATH_T r_g[ILP]; |
|
MATH_T r_p[ILP]; |
|
MATH_T r_m[ILP]; |
|
MATH_T r_v[ILP]; |
|
#pragma unroll |
|
for(int ii = 0; ii < ILP; ii++) |
|
{ |
|
int i = i_start + threadIdx.x + ii*blockDim.x; |
|
if(i < n && i < chunk_size) |
|
{ |
|
r_g[ii] = g[i] * (*inv_scale); |
|
|
|
if (decay == 0) { |
|
r_p[ii] = MATH_T(0); |
|
} |
|
else { |
|
r_p[ii] = p[i]; |
|
} |
|
r_m[ii] = m[i]; |
|
r_v[ii] = v[i]; |
|
} else { |
|
r_g[ii] = MATH_T(0); |
|
r_p[ii] = MATH_T(0); |
|
r_m[ii] = MATH_T(0); |
|
r_v[ii] = MATH_T(0); |
|
} |
|
} |
|
#pragma unroll |
|
for(int ii = 0; ii < ILP; ii++) |
|
{ |
|
if (mode == MOMENT_MODE_0) { |
|
MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm; |
|
|
|
scaled_grad = scaled_grad + decay*r_p[ii]; |
|
r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad; |
|
r_v[ii] = r_v[ii] * beta2 + (1-beta2) * scaled_grad * scaled_grad; |
|
MATH_T next_m_unbiased = r_m[ii] / beta1_correction; |
|
MATH_T next_v_unbiased = r_v[ii] / beta2_correction; |
|
MATH_T denom = sqrtf(next_v_unbiased) + epsilon; |
|
r_p[ii] = next_m_unbiased / denom; |
|
} |
|
else { |
|
MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm; |
|
r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad; |
|
r_v[ii] = r_v[ii] * beta2 + (1-beta2) * scaled_grad * scaled_grad; |
|
MATH_T next_m_unbiased = r_m[ii] / beta1_correction; |
|
MATH_T next_v_unbiased = r_v[ii] / beta2_correction; |
|
MATH_T denom = sqrtf(next_v_unbiased) + epsilon; |
|
r_p[ii] = (next_m_unbiased/denom) + (decay*r_p[ii]); |
|
} |
|
} |
|
#pragma unroll |
|
for(int ii = 0; ii < ILP; ii++) |
|
{ |
|
int i = i_start + threadIdx.x + ii*blockDim.x; |
|
if(i < n && i < chunk_size) |
|
{ |
|
g[i] = r_p[ii]; |
|
m[i] = r_m[ii]; |
|
v[i] = r_v[ii]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
template<typename T, int N, typename param_t> |
|
struct LAMBStage2Functor |
|
{ |
|
static_assert((N == 2 && std::is_same<T, param_t>::value) || (N == 3 && std::is_same<param_t, float>::value), ""); |
|
__device__ __forceinline__ void operator()( |
|
int chunk_size, |
|
volatile int* noop_gmem, |
|
TensorListMetadata<N>& tl, |
|
const float* per_tensor_param_norm, |
|
const float* per_tensor_update_norm, |
|
const float* learning_rate, |
|
const float decay, |
|
bool use_nvlamb) |
|
{ |
|
if (*noop_gmem) { |
|
return; |
|
} |
|
|
|
int tensor_loc = tl.block_to_tensor[blockIdx.x]; |
|
int tensor_num = tl.start_tensor_this_launch + tensor_loc; |
|
int chunk_idx = tl.block_to_chunk[blockIdx.x]; |
|
int n = tl.sizes[tensor_loc]; |
|
|
|
MATH_T ratio = *learning_rate; |
|
|
|
|
|
if (use_nvlamb || (decay != 0.0)) |
|
{ |
|
float param_norm = per_tensor_param_norm[tensor_num]; |
|
float update_norm = per_tensor_update_norm[tensor_num]; |
|
ratio = (update_norm != 0.0f && param_norm != 0.0f) ? *learning_rate * (param_norm / update_norm) : *learning_rate; |
|
} |
|
|
|
T* update = (T*)tl.addresses[0][tensor_loc]; |
|
update += chunk_idx*chunk_size; |
|
|
|
param_t* p = (param_t*)tl.addresses[1][tensor_loc]; |
|
p += chunk_idx*chunk_size; |
|
|
|
T* out_p; |
|
if (N == 3) { |
|
out_p = (T*)tl.addresses[2][tensor_loc]; |
|
out_p += chunk_idx*chunk_size; |
|
} |
|
|
|
n -= chunk_idx*chunk_size; |
|
|
|
|
|
bool can_use_aligned_path = n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(p) && is_aligned(update); |
|
if (N == 3) { |
|
can_use_aligned_path = can_use_aligned_path && is_aligned(out_p); |
|
} |
|
if(can_use_aligned_path) |
|
{ |
|
param_t r_p[ILP]; |
|
T r_update[ILP]; |
|
T r_out_p[ILP]; |
|
for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x) |
|
{ |
|
|
|
load_store(r_p, p, 0, i_start); |
|
load_store(r_update, update, 0, i_start); |
|
if (N == 3) { |
|
load_store(r_out_p, out_p, 0, i_start); |
|
} |
|
#pragma unroll |
|
for(int ii = 0; ii < ILP; ii++) |
|
{ |
|
r_p[ii] = static_cast<MATH_T>(r_p[ii]) - (ratio * static_cast<MATH_T>(r_update[ii])); |
|
if (N == 3) { |
|
r_out_p[ii] = r_p[ii]; |
|
} |
|
} |
|
load_store(p, r_p, i_start, 0); |
|
if (N == 3) { |
|
load_store(out_p, r_out_p, i_start, 0); |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for(int i_start = 0; |
|
i_start < n && i_start < chunk_size; |
|
i_start += blockDim.x*ILP) |
|
{ |
|
MATH_T r_p[ILP]; |
|
MATH_T r_update[ILP]; |
|
#pragma unroll |
|
for(int ii = 0; ii < ILP; ii++) |
|
{ |
|
int i = i_start + threadIdx.x + ii*blockDim.x; |
|
if(i < n && i < chunk_size) |
|
{ |
|
r_p[ii] = p[i]; |
|
r_update[ii] = update[i]; |
|
} |
|
} |
|
#pragma unroll |
|
for(int ii = 0; ii < ILP; ii++) |
|
{ |
|
r_p[ii] = r_p[ii] - (ratio * r_update[ii]); |
|
} |
|
#pragma unroll |
|
for(int ii = 0; ii < ILP; ii++) |
|
{ |
|
int i = i_start + threadIdx.x + ii*blockDim.x; |
|
if(i < n && i < chunk_size) |
|
{ |
|
p[i] = r_p[ii]; |
|
if (N == 3) { |
|
out_p[i] = r_p[ii]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
}; |
|
|
|
|
|
void multi_tensor_lamb_mp_cuda( |
|
int chunk_size, |
|
at::Tensor noop_flag, |
|
std::vector<std::vector<at::Tensor>> tensor_lists, |
|
at::Tensor lr, |
|
const float beta1, |
|
const float beta2, |
|
const float epsilon, |
|
at::Tensor step, |
|
const int bias_correction, |
|
const float weight_decay, |
|
const int grad_averaging, |
|
const int mode, |
|
at::Tensor global_grad_norm, |
|
at::Tensor max_grad_norm, |
|
at::optional<bool> use_nvlamb_python, |
|
at::Tensor found_inf, |
|
at::Tensor inv_scale) |
|
{ |
|
|
|
|
|
const auto n_tensors = tensor_lists.size(); |
|
assert(n_tensors == 4 || n_tensors == 5); |
|
using namespace at; |
|
|
|
bool use_nvlamb = use_nvlamb_python.has_value() ? use_nvlamb_python.value() : false; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float beta3 = 1.0f; |
|
if (grad_averaging == 1) beta3 = 1 - beta1; |
|
|
|
std::vector<std::vector<at::Tensor>> stage1_tensor_lists(tensor_lists.begin(), tensor_lists.begin() + 4); |
|
std::vector<std::vector<at::Tensor>> grad_list(tensor_lists.begin(), tensor_lists.begin()+1); |
|
std::vector<std::vector<at::Tensor>> param_list(tensor_lists.begin()+1, tensor_lists.begin()+2); |
|
|
|
|
|
auto param_norm_tuple = multi_tensor_l2norm_mp_cuda(chunk_size, noop_flag, param_list, true); |
|
|
|
|
|
|
|
|
|
if (n_tensors == 4) { |
|
DISPATCH_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(), 0, "lamb_stage_1", |
|
multi_tensor_apply<4>( |
|
BLOCK_SIZE, |
|
chunk_size, |
|
noop_flag, |
|
stage1_tensor_lists, |
|
LAMBStage1Functor<scalar_t_0, scalar_t_0>(), |
|
beta1, |
|
beta2, |
|
beta3, |
|
|
|
|
|
step.data_ptr<int>(), |
|
bias_correction, |
|
epsilon, |
|
(adamMode_t) mode, |
|
weight_decay, |
|
global_grad_norm.data_ptr<float>(), |
|
max_grad_norm.data_ptr<float>(), |
|
found_inf.data_ptr<float>(), |
|
inv_scale.data_ptr<float>()); ) |
|
} else { |
|
DISPATCH_FLOAT_HALF_AND_BFLOAT(tensor_lists[0][0].scalar_type(), 0, "lamb_stage_1", |
|
multi_tensor_apply<4>( |
|
BLOCK_SIZE, |
|
chunk_size, |
|
noop_flag, |
|
stage1_tensor_lists, |
|
LAMBStage1Functor<scalar_t_0, float>(), |
|
beta1, |
|
beta2, |
|
beta3, |
|
|
|
|
|
step.data_ptr<int>(), |
|
bias_correction, |
|
epsilon, |
|
(adamMode_t) mode, |
|
weight_decay, |
|
global_grad_norm.data_ptr<float>(), |
|
max_grad_norm.data_ptr<float>(), |
|
found_inf.data_ptr<float>(), |
|
inv_scale.data_ptr<float>()); ) |
|
} |
|
|
|
|
|
auto update_norm_tuple = multi_tensor_l2norm_mp_cuda(chunk_size, noop_flag, grad_list, true); |
|
|
|
std::vector<std::vector<at::Tensor>> grad_param_list(tensor_lists.begin(), tensor_lists.begin()+2); |
|
if (n_tensors == 4) { |
|
DISPATCH_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(), 0, "lamb_stage_2", |
|
multi_tensor_apply<2>( |
|
BLOCK_SIZE, |
|
chunk_size, |
|
noop_flag, |
|
grad_param_list, |
|
LAMBStage2Functor<scalar_t_0, 2, scalar_t_0>(), |
|
std::get<1>(param_norm_tuple).data_ptr<float>(), |
|
std::get<1>(update_norm_tuple).data_ptr<float>(), |
|
lr.data_ptr<float>(), |
|
weight_decay, |
|
use_nvlamb); ) |
|
} else { |
|
grad_param_list.push_back(tensor_lists[4]); |
|
DISPATCH_FLOAT_HALF_AND_BFLOAT(tensor_lists[0][0].scalar_type(), 0, "lamb_stage_2", |
|
multi_tensor_apply<3>( |
|
BLOCK_SIZE, |
|
chunk_size, |
|
noop_flag, |
|
grad_param_list, |
|
LAMBStage2Functor<scalar_t_0, 3, float>(), |
|
std::get<1>(param_norm_tuple).data_ptr<float>(), |
|
std::get<1>(update_norm_tuple).data_ptr<float>(), |
|
lr.data_ptr<float>(), |
|
weight_decay, |
|
use_nvlamb); ) |
|
} |
|
AT_CUDA_CHECK(cudaGetLastError()); |
|
|
|
} |
|
|