|
import torch |
|
from torch.optim import Optimizer |
|
import math |
|
import apex |
|
import unittest |
|
|
|
from test_fused_optimizer import TestFusedOptimizer |
|
from itertools import product |
|
|
|
class Novograd(Optimizer): |
|
""" |
|
Implements Novograd algorithm. |
|
|
|
Args: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups |
|
lr (float, optional): learning rate (default: 1e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square (default: (0.95, 0)) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability (default: 1e-8) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
grad_averaging: gradient averaging |
|
amsgrad (boolean, optional): whether to use the AMSGrad variant of this |
|
algorithm from the paper `On the Convergence of Adam and Beyond`_ |
|
(default: False) |
|
""" |
|
|
|
def __init__(self, params, lr=1e-3, betas=(0.95, 0), eps=1e-8, |
|
weight_decay=0, grad_averaging=False, amsgrad=False): |
|
if not 0.0 <= lr: |
|
raise ValueError("Invalid learning rate: {}".format(lr)) |
|
if not 0.0 <= eps: |
|
raise ValueError("Invalid epsilon value: {}".format(eps)) |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
|
defaults = dict(lr=lr, betas=betas, eps=eps, |
|
weight_decay=weight_decay, |
|
grad_averaging=grad_averaging, |
|
amsgrad=amsgrad) |
|
|
|
super(Novograd, self).__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super(Novograd, self).__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault('amsgrad', False) |
|
|
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad.data |
|
if grad.is_sparse: |
|
raise RuntimeError('Sparse gradients are not supported.') |
|
amsgrad = group['amsgrad'] |
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state['step'] = 0 |
|
|
|
state['exp_avg'] = torch.zeros_like(p.data) |
|
|
|
state['exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device) |
|
if amsgrad: |
|
|
|
state['max_exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device) |
|
|
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] |
|
if amsgrad: |
|
max_exp_avg_sq = state['max_exp_avg_sq'] |
|
beta1, beta2 = group['betas'] |
|
|
|
state['step'] += 1 |
|
|
|
norm = torch.sum(torch.pow(grad, 2)) |
|
|
|
if exp_avg_sq == 0: |
|
exp_avg_sq.copy_(norm) |
|
else: |
|
exp_avg_sq.mul_(beta2).add_(norm, alpha=1 - beta2) |
|
|
|
if amsgrad: |
|
|
|
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) |
|
|
|
denom = max_exp_avg_sq.sqrt().add_(group['eps']) |
|
else: |
|
denom = exp_avg_sq.sqrt().add_(group['eps']) |
|
|
|
grad.div_(denom) |
|
if group['weight_decay'] != 0: |
|
grad.add_(p.data, alpha=group['weight_decay']) |
|
if group['grad_averaging']: |
|
grad.mul_(1 - beta1) |
|
exp_avg.mul_(beta1).add_(grad) |
|
|
|
p.data.add_(exp_avg, alpha=-group['lr']) |
|
|
|
return loss |
|
|
|
|
|
class TestFusedNovoGrad(TestFusedOptimizer): |
|
|
|
def __init__(self, *args, **kwargs): |
|
super(TestFusedNovoGrad, self).__init__(*args, **kwargs) |
|
|
|
|
|
|
|
self.options = {'lr':1e-3, 'betas':(0.95, 0), 'eps':1e-8, |
|
'weight_decay':0, 'grad_averaging':False, 'amsgrad':False} |
|
|
|
self.tst_options = {'lr':1e-3, 'betas':(0.95, 0), 'eps':1e-8, |
|
'weight_decay':0, 'grad_averaging':False, 'amsgrad':False, |
|
'bias_correction':False, 'reg_inside_moment':True, |
|
'norm_type':2, 'init_zero':False, 'set_grad_none':True} |
|
|
|
self.ref_optim = Novograd |
|
self.fused_optim = apex.optimizers.FusedNovoGrad |
|
|
|
def test_float(self): |
|
self.gen_single_type_test(param_type=torch.float) |
|
|
|
def test_half(self): |
|
self.gen_single_type_test(param_type=torch.float16) |
|
|
|
@unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required") |
|
def test_multi_device(self): |
|
devices = ("cuda:1", "cuda:0") |
|
for current_dev, tensor_dev in product(devices, devices): |
|
with torch.cuda.device(current_dev): |
|
torch.cuda.synchronize() |
|
self.gen_single_type_test(param_type=torch.float, device=tensor_dev) |
|
|
|
|
|
def test_multi_params(self): |
|
sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]] |
|
|
|
tensors = [] |
|
for size in sizes: |
|
tensors.append(torch.rand(size, dtype=torch.float, device="cuda")) |
|
ref_param, tst_param, ref_optim, tst_optim = self.gen_param_optim( |
|
tensors, self.options, self.tst_options |
|
) |
|
|
|
for _ in range(self.iters): |
|
self.gen_grad(ref_param, tst_param) |
|
ref_optim.step() |
|
tst_optim.step() |
|
max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) |
|
self.assertLessEqual(max_abs_diff, self.max_abs_diff) |
|
self.assertLessEqual(max_rel_diff, self.max_rel_diff) |
|
|
|
if __name__ == '__main__': |
|
unittest.main() |
|
|