| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import numpy as np | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import torch.nn as nn | 
					
					
						
						| 
							 | 
						from einops import rearrange | 
					
					
						
						| 
							 | 
						from timm.models.layers import DropPath | 
					
					
						
						| 
							 | 
						from timm.models.vision_transformer import Mlp | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						from opensora.acceleration.checkpoint import auto_grad_checkpoint | 
					
					
						
						| 
							 | 
						from opensora.models.layers.blocks import ( | 
					
					
						
						| 
							 | 
						    Attention, | 
					
					
						
						| 
							 | 
						    CaptionEmbedder, | 
					
					
						
						| 
							 | 
						    MultiHeadCrossAttention, | 
					
					
						
						| 
							 | 
						    PatchEmbed3D, | 
					
					
						
						| 
							 | 
						    SeqParallelAttention, | 
					
					
						
						| 
							 | 
						    SeqParallelMultiHeadCrossAttention, | 
					
					
						
						| 
							 | 
						    SizeEmbedder, | 
					
					
						
						| 
							 | 
						    T2IFinalLayer, | 
					
					
						
						| 
							 | 
						    TimestepEmbedder, | 
					
					
						
						| 
							 | 
						    approx_gelu, | 
					
					
						
						| 
							 | 
						    get_1d_sincos_pos_embed, | 
					
					
						
						| 
							 | 
						    get_2d_sincos_pos_embed, | 
					
					
						
						| 
							 | 
						    get_layernorm, | 
					
					
						
						| 
							 | 
						    t2i_modulate, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from opensora.registry import MODELS | 
					
					
						
						| 
							 | 
						from opensora.utils.ckpt_utils import load_checkpoint | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class PixArtBlock(nn.Module): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    A PixArt block with adaptive layer norm (adaLN-single) conditioning. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        hidden_size, | 
					
					
						
						| 
							 | 
						        num_heads, | 
					
					
						
						| 
							 | 
						        mlp_ratio=4.0, | 
					
					
						
						| 
							 | 
						        drop_path=0.0, | 
					
					
						
						| 
							 | 
						        enable_flashattn=False, | 
					
					
						
						| 
							 | 
						        enable_layernorm_kernel=False, | 
					
					
						
						| 
							 | 
						        enable_sequence_parallelism=False, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.hidden_size = hidden_size | 
					
					
						
						| 
							 | 
						        self.enable_flashattn = enable_flashattn | 
					
					
						
						| 
							 | 
						        self._enable_sequence_parallelism = enable_sequence_parallelism | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if enable_sequence_parallelism: | 
					
					
						
						| 
							 | 
						            self.attn_cls = SeqParallelAttention | 
					
					
						
						| 
							 | 
						            self.mha_cls = SeqParallelMultiHeadCrossAttention | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.attn_cls = Attention | 
					
					
						
						| 
							 | 
						            self.mha_cls = MultiHeadCrossAttention | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.norm1 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel) | 
					
					
						
						| 
							 | 
						        self.attn = self.attn_cls( | 
					
					
						
						| 
							 | 
						            hidden_size, | 
					
					
						
						| 
							 | 
						            num_heads=num_heads, | 
					
					
						
						| 
							 | 
						            qkv_bias=True, | 
					
					
						
						| 
							 | 
						            enable_flashattn=enable_flashattn, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.cross_attn = self.mha_cls(hidden_size, num_heads) | 
					
					
						
						| 
							 | 
						        self.norm2 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel) | 
					
					
						
						| 
							 | 
						        self.mlp = Mlp( | 
					
					
						
						| 
							 | 
						            in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0 | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | 
					
					
						
						| 
							 | 
						        self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x, y, t, mask=None): | 
					
					
						
						| 
							 | 
						        B, N, C = x.shape | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | 
					
					
						
						| 
							 | 
						            self.scale_shift_table[None] + t.reshape(B, 6, -1) | 
					
					
						
						| 
							 | 
						        ).chunk(6, dim=1) | 
					
					
						
						| 
							 | 
						        x = x + self.drop_path(gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa)).reshape(B, N, C)) | 
					
					
						
						| 
							 | 
						        x = x + self.cross_attn(x, y, mask) | 
					
					
						
						| 
							 | 
						        x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return x | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@MODELS.register_module() | 
					
					
						
						| 
							 | 
						class PixArt(nn.Module): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Diffusion model with a Transformer backbone. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_size=(1, 32, 32), | 
					
					
						
						| 
							 | 
						        in_channels=4, | 
					
					
						
						| 
							 | 
						        patch_size=(1, 2, 2), | 
					
					
						
						| 
							 | 
						        hidden_size=1152, | 
					
					
						
						| 
							 | 
						        depth=28, | 
					
					
						
						| 
							 | 
						        num_heads=16, | 
					
					
						
						| 
							 | 
						        mlp_ratio=4.0, | 
					
					
						
						| 
							 | 
						        class_dropout_prob=0.1, | 
					
					
						
						| 
							 | 
						        pred_sigma=True, | 
					
					
						
						| 
							 | 
						        drop_path: float = 0.0, | 
					
					
						
						| 
							 | 
						        no_temporal_pos_emb=False, | 
					
					
						
						| 
							 | 
						        caption_channels=4096, | 
					
					
						
						| 
							 | 
						        model_max_length=120, | 
					
					
						
						| 
							 | 
						        dtype=torch.float32, | 
					
					
						
						| 
							 | 
						        freeze=None, | 
					
					
						
						| 
							 | 
						        space_scale=1.0, | 
					
					
						
						| 
							 | 
						        time_scale=1.0, | 
					
					
						
						| 
							 | 
						        enable_flashattn=False, | 
					
					
						
						| 
							 | 
						        enable_layernorm_kernel=False, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.pred_sigma = pred_sigma | 
					
					
						
						| 
							 | 
						        self.in_channels = in_channels | 
					
					
						
						| 
							 | 
						        self.out_channels = in_channels * 2 if pred_sigma else in_channels | 
					
					
						
						| 
							 | 
						        self.hidden_size = hidden_size | 
					
					
						
						| 
							 | 
						        self.patch_size = patch_size | 
					
					
						
						| 
							 | 
						        self.input_size = input_size | 
					
					
						
						| 
							 | 
						        num_patches = np.prod([input_size[i] // patch_size[i] for i in range(3)]) | 
					
					
						
						| 
							 | 
						        self.num_patches = num_patches | 
					
					
						
						| 
							 | 
						        self.num_temporal = input_size[0] // patch_size[0] | 
					
					
						
						| 
							 | 
						        self.num_spatial = num_patches // self.num_temporal | 
					
					
						
						| 
							 | 
						        self.base_size = int(np.sqrt(self.num_spatial)) | 
					
					
						
						| 
							 | 
						        self.num_heads = num_heads | 
					
					
						
						| 
							 | 
						        self.dtype = dtype | 
					
					
						
						| 
							 | 
						        self.no_temporal_pos_emb = no_temporal_pos_emb | 
					
					
						
						| 
							 | 
						        self.depth = depth | 
					
					
						
						| 
							 | 
						        self.mlp_ratio = mlp_ratio | 
					
					
						
						| 
							 | 
						        self.enable_flashattn = enable_flashattn | 
					
					
						
						| 
							 | 
						        self.enable_layernorm_kernel = enable_layernorm_kernel | 
					
					
						
						| 
							 | 
						        self.space_scale = space_scale | 
					
					
						
						| 
							 | 
						        self.time_scale = time_scale | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.x_embedder = PatchEmbed3D(patch_size, in_channels, hidden_size) | 
					
					
						
						| 
							 | 
						        self.t_embedder = TimestepEmbedder(hidden_size) | 
					
					
						
						| 
							 | 
						        self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True)) | 
					
					
						
						| 
							 | 
						        self.y_embedder = CaptionEmbedder( | 
					
					
						
						| 
							 | 
						            in_channels=caption_channels, | 
					
					
						
						| 
							 | 
						            hidden_size=hidden_size, | 
					
					
						
						| 
							 | 
						            uncond_prob=class_dropout_prob, | 
					
					
						
						| 
							 | 
						            act_layer=approx_gelu, | 
					
					
						
						| 
							 | 
						            token_num=model_max_length, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.register_buffer("pos_embed", self.get_spatial_pos_embed()) | 
					
					
						
						| 
							 | 
						        self.register_buffer("pos_embed_temporal", self.get_temporal_pos_embed()) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)]   | 
					
					
						
						| 
							 | 
						        self.blocks = nn.ModuleList( | 
					
					
						
						| 
							 | 
						            [ | 
					
					
						
						| 
							 | 
						                PixArtBlock( | 
					
					
						
						| 
							 | 
						                    hidden_size, | 
					
					
						
						| 
							 | 
						                    num_heads, | 
					
					
						
						| 
							 | 
						                    mlp_ratio=mlp_ratio, | 
					
					
						
						| 
							 | 
						                    drop_path=drop_path[i], | 
					
					
						
						| 
							 | 
						                    enable_flashattn=enable_flashattn, | 
					
					
						
						| 
							 | 
						                    enable_layernorm_kernel=enable_layernorm_kernel, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                for i in range(depth) | 
					
					
						
						| 
							 | 
						            ] | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.final_layer = T2IFinalLayer(hidden_size, np.prod(self.patch_size), self.out_channels) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.initialize_weights() | 
					
					
						
						| 
							 | 
						        if freeze is not None: | 
					
					
						
						| 
							 | 
						            assert freeze in ["text"] | 
					
					
						
						| 
							 | 
						            if freeze == "text": | 
					
					
						
						| 
							 | 
						                self.freeze_text() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x, timestep, y, mask=None): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Forward pass of PixArt. | 
					
					
						
						| 
							 | 
						        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | 
					
					
						
						| 
							 | 
						        t: (N,) tensor of diffusion timesteps | 
					
					
						
						| 
							 | 
						        y: (N, 1, 120, C) tensor of class labels | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        x = x.to(self.dtype) | 
					
					
						
						| 
							 | 
						        timestep = timestep.to(self.dtype) | 
					
					
						
						| 
							 | 
						        y = y.to(self.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        x = self.x_embedder(x)   | 
					
					
						
						| 
							 | 
						        x = rearrange(x, "b (t s) d -> b t s d", t=self.num_temporal, s=self.num_spatial) | 
					
					
						
						| 
							 | 
						        x = x + self.pos_embed | 
					
					
						
						| 
							 | 
						        if not self.no_temporal_pos_emb: | 
					
					
						
						| 
							 | 
						            x = rearrange(x, "b t s d -> b s t d") | 
					
					
						
						| 
							 | 
						            x = x + self.pos_embed_temporal | 
					
					
						
						| 
							 | 
						            x = rearrange(x, "b s t d -> b (t s) d") | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            x = rearrange(x, "b t s d -> b (t s) d") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        t = self.t_embedder(timestep, dtype=x.dtype)   | 
					
					
						
						| 
							 | 
						        t0 = self.t_block(t) | 
					
					
						
						| 
							 | 
						        y = self.y_embedder(y, self.training)   | 
					
					
						
						| 
							 | 
						        if mask is not None: | 
					
					
						
						| 
							 | 
						            if mask.shape[0] != y.shape[0]: | 
					
					
						
						| 
							 | 
						                mask = mask.repeat(y.shape[0] // mask.shape[0], 1) | 
					
					
						
						| 
							 | 
						            mask = mask.squeeze(1).squeeze(1) | 
					
					
						
						| 
							 | 
						            y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) | 
					
					
						
						| 
							 | 
						            y_lens = mask.sum(dim=1).tolist() | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            y_lens = [y.shape[2]] * y.shape[0] | 
					
					
						
						| 
							 | 
						            y = y.squeeze(1).view(1, -1, x.shape[-1]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        for block in self.blocks: | 
					
					
						
						| 
							 | 
						            x = auto_grad_checkpoint(block, x, y, t0, y_lens) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        x = self.final_layer(x, t)   | 
					
					
						
						| 
							 | 
						        x = self.unpatchify(x)   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        x = x.to(torch.float32) | 
					
					
						
						| 
							 | 
						        return x | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def unpatchify(self, x): | 
					
					
						
						| 
							 | 
						        c = self.out_channels | 
					
					
						
						| 
							 | 
						        t, h, w = [self.input_size[i] // self.patch_size[i] for i in range(3)] | 
					
					
						
						| 
							 | 
						        pt, ph, pw = self.patch_size | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        x = x.reshape(shape=(x.shape[0], t, h, w, pt, ph, pw, c)) | 
					
					
						
						| 
							 | 
						        x = rearrange(x, "n t h w r p q c -> n c t r h p w q") | 
					
					
						
						| 
							 | 
						        imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw)) | 
					
					
						
						| 
							 | 
						        return imgs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_spatial_pos_embed(self, grid_size=None): | 
					
					
						
						| 
							 | 
						        if grid_size is None: | 
					
					
						
						| 
							 | 
						            grid_size = self.input_size[1:] | 
					
					
						
						| 
							 | 
						        pos_embed = get_2d_sincos_pos_embed( | 
					
					
						
						| 
							 | 
						            self.hidden_size, | 
					
					
						
						| 
							 | 
						            (grid_size[0] // self.patch_size[1], grid_size[1] // self.patch_size[2]), | 
					
					
						
						| 
							 | 
						            scale=self.space_scale, | 
					
					
						
						| 
							 | 
						            base_size=self.base_size, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False) | 
					
					
						
						| 
							 | 
						        return pos_embed | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_temporal_pos_embed(self): | 
					
					
						
						| 
							 | 
						        pos_embed = get_1d_sincos_pos_embed( | 
					
					
						
						| 
							 | 
						            self.hidden_size, | 
					
					
						
						| 
							 | 
						            self.input_size[0] // self.patch_size[0], | 
					
					
						
						| 
							 | 
						            scale=self.time_scale, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False) | 
					
					
						
						| 
							 | 
						        return pos_embed | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def freeze_text(self): | 
					
					
						
						| 
							 | 
						        for n, p in self.named_parameters(): | 
					
					
						
						| 
							 | 
						            if "cross_attn" in n: | 
					
					
						
						| 
							 | 
						                p.requires_grad = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def initialize_weights(self): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        def _basic_init(module): | 
					
					
						
						| 
							 | 
						            if isinstance(module, nn.Linear): | 
					
					
						
						| 
							 | 
						                torch.nn.init.xavier_uniform_(module.weight) | 
					
					
						
						| 
							 | 
						                if module.bias is not None: | 
					
					
						
						| 
							 | 
						                    nn.init.constant_(module.bias, 0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.apply(_basic_init) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        w = self.x_embedder.proj.weight.data | 
					
					
						
						| 
							 | 
						        nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) | 
					
					
						
						| 
							 | 
						        nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) | 
					
					
						
						| 
							 | 
						        nn.init.normal_(self.t_block[1].weight, std=0.02) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02) | 
					
					
						
						| 
							 | 
						        nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        for block in self.blocks: | 
					
					
						
						| 
							 | 
						            nn.init.constant_(block.cross_attn.proj.weight, 0) | 
					
					
						
						| 
							 | 
						            nn.init.constant_(block.cross_attn.proj.bias, 0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        nn.init.constant_(self.final_layer.linear.weight, 0) | 
					
					
						
						| 
							 | 
						        nn.init.constant_(self.final_layer.linear.bias, 0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@MODELS.register_module() | 
					
					
						
						| 
							 | 
						class PixArtMS(PixArt): | 
					
					
						
						| 
							 | 
						    def __init__(self, *args, **kwargs): | 
					
					
						
						| 
							 | 
						        super().__init__(*args, **kwargs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        assert self.hidden_size % 3 == 0, "hidden_size must be divisible by 3" | 
					
					
						
						| 
							 | 
						        self.csize_embedder = SizeEmbedder(self.hidden_size // 3) | 
					
					
						
						| 
							 | 
						        self.ar_embedder = SizeEmbedder(self.hidden_size // 3) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x, timestep, y, mask=None, data_info=None): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Forward pass of PixArt. | 
					
					
						
						| 
							 | 
						        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | 
					
					
						
						| 
							 | 
						        t: (N,) tensor of diffusion timesteps | 
					
					
						
						| 
							 | 
						        y: (N, 1, 120, C) tensor of class labels | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        x = x.to(self.dtype) | 
					
					
						
						| 
							 | 
						        timestep = timestep.to(self.dtype) | 
					
					
						
						| 
							 | 
						        y = y.to(self.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        c_size = data_info["hw"] | 
					
					
						
						| 
							 | 
						        ar = data_info["ar"] | 
					
					
						
						| 
							 | 
						        pos_embed = self.get_spatial_pos_embed((x.shape[-2], x.shape[-1])).to(x.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        x = self.x_embedder(x)   | 
					
					
						
						| 
							 | 
						        x = rearrange(x, "b (t s) d -> b t s d", t=self.num_temporal, s=self.num_spatial) | 
					
					
						
						| 
							 | 
						        x = x + pos_embed.to(x.device) | 
					
					
						
						| 
							 | 
						        if not self.no_temporal_pos_emb: | 
					
					
						
						| 
							 | 
						            x = rearrange(x, "b t s d -> b s t d") | 
					
					
						
						| 
							 | 
						            x = x + self.pos_embed_temporal | 
					
					
						
						| 
							 | 
						            x = rearrange(x, "b s t d -> b (t s) d") | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            x = rearrange(x, "b t s d -> b (t s) d") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        t = self.t_embedder(timestep, dtype=x.dtype)   | 
					
					
						
						| 
							 | 
						        B = x.shape[0] | 
					
					
						
						| 
							 | 
						        csize = self.csize_embedder(c_size, B) | 
					
					
						
						| 
							 | 
						        ar = self.ar_embedder(ar, B) | 
					
					
						
						| 
							 | 
						        t = t + torch.cat([csize, ar], dim=1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        t0 = self.t_block(t) | 
					
					
						
						| 
							 | 
						        y = self.y_embedder(y, self.training)   | 
					
					
						
						| 
							 | 
						        if mask is not None: | 
					
					
						
						| 
							 | 
						            if mask.shape[0] != y.shape[0]: | 
					
					
						
						| 
							 | 
						                mask = mask.repeat(y.shape[0] // mask.shape[0], 1) | 
					
					
						
						| 
							 | 
						            mask = mask.squeeze(1).squeeze(1) | 
					
					
						
						| 
							 | 
						            y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) | 
					
					
						
						| 
							 | 
						            y_lens = mask.sum(dim=1).tolist() | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            y_lens = [y.shape[2]] * y.shape[0] | 
					
					
						
						| 
							 | 
						            y = y.squeeze(1).view(1, -1, x.shape[-1]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        for block in self.blocks: | 
					
					
						
						| 
							 | 
						            x = block(x, y, t0, y_lens) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        x = self.final_layer(x, t)   | 
					
					
						
						| 
							 | 
						        x = self.unpatchify(x)   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        x = x.to(torch.float32) | 
					
					
						
						| 
							 | 
						        return x | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@MODELS.register_module("PixArt-XL/2") | 
					
					
						
						| 
							 | 
						def PixArt_XL_2(from_pretrained=None, **kwargs): | 
					
					
						
						| 
							 | 
						    model = PixArt(depth=28, hidden_size=1152, patch_size=(1, 2, 2), num_heads=16, **kwargs) | 
					
					
						
						| 
							 | 
						    if from_pretrained is not None: | 
					
					
						
						| 
							 | 
						        load_checkpoint(model, from_pretrained) | 
					
					
						
						| 
							 | 
						    return model | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@MODELS.register_module("PixArtMS-XL/2") | 
					
					
						
						| 
							 | 
						def PixArtMS_XL_2(from_pretrained=None, **kwargs): | 
					
					
						
						| 
							 | 
						    model = PixArtMS(depth=28, hidden_size=1152, patch_size=(1, 2, 2), num_heads=16, **kwargs) | 
					
					
						
						| 
							 | 
						    if from_pretrained is not None: | 
					
					
						
						| 
							 | 
						        load_checkpoint(model, from_pretrained) | 
					
					
						
						| 
							 | 
						    return model | 
					
					
						
						| 
							 | 
						
 |