|
import unittest |
|
import os |
|
|
|
import torch |
|
from torch.optim import Optimizer |
|
import apex |
|
from apex.multi_tensor_apply import multi_tensor_applier |
|
from itertools import product |
|
|
|
class RefLAMB(Optimizer): |
|
r"""Implements Lamb algorithm. |
|
|
|
It has been proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_. |
|
|
|
Arguments: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups |
|
lr (float, optional): learning rate (default: 1e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square (default: (0.9, 0.999)) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability (default: 1e-6) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0.01) |
|
|
|
.. _Large Batch Optimization for Deep Learning: Training BERT in 76 minutes: |
|
https://arxiv.org/abs/1904.00962 |
|
""" |
|
|
|
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-6, weight_decay=0.01): |
|
if not 0.0 <= lr: |
|
raise ValueError("Invalid learning rate: {}".format(lr)) |
|
if not 0.0 <= eps: |
|
raise ValueError("Invalid epsilon value: {}".format(eps)) |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
|
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) |
|
super(RefLAMB, self).__init__(params, defaults) |
|
if multi_tensor_applier.available: |
|
import amp_C |
|
self.multi_tensor_l2norm=amp_C.multi_tensor_l2norm |
|
|
|
self._dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device=self.param_groups[0]["params"][0].device) |
|
self.multi_tensor_lamb = amp_C.multi_tensor_lamb |
|
else: |
|
raise RuntimeError('apex.optimizers.FusedLAMB requires cuda extensions') |
|
|
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
|
|
g_all_32, g_all_16, g_all_bf16 = [], [], [] |
|
for group in self.param_groups: |
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
if p.dtype == torch.float32: |
|
g_all_32.append(p.grad.data) |
|
elif p.dtype == torch.float16: |
|
g_all_16.append(p.grad.data) |
|
elif p.dtype == torch.bfloat16: |
|
g_all_bf16.append(p.grad.data) |
|
else: |
|
raise RuntimeError('FusedLAMB only support fp16, fp32, and bf16.') |
|
|
|
device = self.param_groups[0]["params"][0].device |
|
g_norm_32, g_norm_16, g_norm_bf16 = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) |
|
|
|
if len(g_all_32) > 0: |
|
g_norm_32 = multi_tensor_applier(self.multi_tensor_l2norm, |
|
self._dummy_overflow_buf, |
|
[g_all_32], False)[0] |
|
if len(g_all_16) > 0: |
|
g_norm_16 = multi_tensor_applier(self.multi_tensor_l2norm, |
|
self._dummy_overflow_buf, |
|
[g_all_16], False)[0] |
|
if len(g_all_bf16) > 0: |
|
g_norm_bf16 = multi_tensor_applier(self.multi_tensor_l2norm, |
|
self._dummy_overflow_buf, |
|
[g_all_bf16], False)[0] |
|
|
|
|
|
global_grad_norm = multi_tensor_applier(self.multi_tensor_l2norm, |
|
self._dummy_overflow_buf, |
|
[[g_norm_32, g_norm_16, g_norm_bf16]], |
|
False)[0] |
|
|
|
max_grad_norm = 1.0 |
|
clipped_ratio = max_grad_norm / max(global_grad_norm, max_grad_norm) |
|
|
|
for group in self.param_groups: |
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
p.grad.data *= clipped_ratio |
|
grad = p.grad.data |
|
if grad.is_sparse: |
|
raise RuntimeError('Lamb does not support sparse gradients, consider SparseAdam instad.') |
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state['step'] = 0 |
|
|
|
state['m'] = torch.zeros_like(p.data) |
|
|
|
state['v'] = torch.zeros_like(p.data) |
|
|
|
m_t, v_t = state['m'], state['v'] |
|
beta1, beta2 = group['betas'] |
|
|
|
state['step'] += 1 |
|
|
|
|
|
m_t.mul_(beta1).add_(grad, alpha=1-beta1) |
|
|
|
if len(g_all_16) > 0: |
|
v_t.mul_(beta2) |
|
v_t = v_t.to(torch.float32) |
|
grad32 = grad.to(torch.float32) |
|
v_t.addcmul_(grad32, grad32, value=1-beta2) |
|
else: |
|
v_t.mul_(beta2).addcmul_(grad, grad, value=1-beta2) |
|
|
|
|
|
m_t_hat = m_t / (1.0 - beta1 ** state['step']) |
|
v_t_hat = v_t / (1.0 - beta2 ** state['step']) |
|
|
|
update = m_t_hat / v_t_hat.sqrt().add(group['eps']) |
|
|
|
if group['weight_decay'] != 0: |
|
update.add_(p.data, alpha=group['weight_decay']) |
|
|
|
trust_ratio = 1.0 |
|
w_norm = p.data.to(torch.float32).pow(2).sum().sqrt() |
|
g_norm = update.pow(2).sum().sqrt() |
|
if w_norm > 0 and g_norm > 0: |
|
trust_ratio = w_norm / g_norm |
|
|
|
state['w_norm'] = w_norm |
|
state['g_norm'] = g_norm |
|
state['trust_ratio'] = trust_ratio |
|
|
|
step_size = group['lr'] |
|
|
|
p.data.add_(update, alpha=-step_size*trust_ratio) |
|
|
|
return loss |
|
|
|
class TestLamb(unittest.TestCase): |
|
def setUp(self, max_abs_diff=1e-3, max_rel_diff=1, iters=7): |
|
self.max_abs_diff = max_abs_diff |
|
self.max_rel_diff = max_rel_diff |
|
self.iters = iters |
|
torch.cuda.manual_seed(9876) |
|
|
|
|
|
def tearDown(self): |
|
pass |
|
|
|
def gen_param_optim(self, tensors, lamb_option): |
|
ref_param = [] |
|
tst_param = [] |
|
for tensor in tensors: |
|
ref_param.append(torch.nn.Parameter(tensor.clone())) |
|
tst_param.append(torch.nn.Parameter(tensor.clone())) |
|
|
|
ref_optim = self.ref_optim(ref_param, **lamb_option) |
|
tst_optim = self.tst_optim(tst_param, use_nvlamb=True, **lamb_option) |
|
|
|
return (ref_param, tst_param, ref_optim, tst_optim) |
|
|
|
def gen_grad(self, ref_param, tst_param): |
|
for p_ref, p_tst in zip(ref_param, tst_param): |
|
p_ref.grad = torch.rand_like(p_ref) |
|
p_tst.grad = p_ref.grad |
|
|
|
def gen_mixed_grad(self, ref_param, tst_param, scale=1.0): |
|
half_grads = [] |
|
for p_ref, _ in zip(ref_param, tst_param): |
|
half_grads.append(torch.rand_like(p_ref).half()) |
|
p_ref.grad = half_grads[-1].float() / scale |
|
return half_grads |
|
|
|
def get_max_diff(self, ref_param, tst_param): |
|
max_abs_diff = max_rel_diff = 0 |
|
for p_ref, p_tst in zip(ref_param, tst_param): |
|
max_abs_diff_p = (p_ref - p_tst).abs().max().item() |
|
max_rel_diff_p = ((p_ref - p_tst) / p_ref).abs().max().item() |
|
|
|
if max_abs_diff_p > max_abs_diff: max_abs_diff = max_abs_diff_p |
|
if max_rel_diff_p > max_rel_diff: max_rel_diff = max_rel_diff_p |
|
|
|
return max_abs_diff, max_rel_diff |
|
|
|
def gen_single_type_test(self, param_type=torch.float, device="cuda"): |
|
nelem = 18011 |
|
tensor = torch.rand(nelem, dtype=param_type, device=device) |
|
weight_decay = [0, 0.01] |
|
|
|
for wd in weight_decay: |
|
lamb_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08, 'weight_decay':wd} |
|
ref_param, tst_param, ref_optim, tst_optim = \ |
|
self.gen_param_optim([tensor], lamb_option) |
|
|
|
if isinstance(tst_optim, apex.optimizers.FusedMixedPrecisionLamb): |
|
if param_type != torch.float: |
|
|
|
|
|
|
|
|
|
tst_optim.reduced_precision_dtype = param_type |
|
for i in range(self.iters): |
|
self.gen_grad(ref_param, tst_param) |
|
ref_optim.step() |
|
torch.cuda.synchronize() |
|
tst_optim.step() |
|
torch.cuda.synchronize() |
|
torch.testing.assert_close(tst_param, ref_param) |
|
|
|
class TestFusedLAMB(TestLamb): |
|
def __init__(self, *args, **kwargs): |
|
super(TestLamb, self).__init__(*args, **kwargs) |
|
self.ref_optim = RefLAMB |
|
self.tst_optim = apex.optimizers.FusedLAMB |
|
|
|
|
|
def test_float(self): |
|
self.gen_single_type_test(param_type=torch.float) |
|
|
|
@unittest.skip("PyTorch optimizer is not numerically correct for fp16") |
|
def test_half(self): |
|
self.gen_single_type_test(param_type=torch.float16) |
|
|
|
@unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required") |
|
def test_multi_device(self): |
|
devices = ("cuda:0", "cuda:1") |
|
for current_dev, tensor_dev in product(devices, devices): |
|
with torch.cuda.device(current_dev): |
|
self.gen_single_type_test(param_type=torch.float, device=tensor_dev) |
|
|
|
def test_multi_params(self): |
|
sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]] |
|
weight_decay = [0, 0.01] |
|
|
|
for wd in weight_decay: |
|
lamb_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08, 'weight_decay':wd} |
|
tensors = [] |
|
for size in sizes: |
|
tensors.append(torch.rand(size, dtype=torch.float, device='cuda')) |
|
ref_param, tst_param, ref_optim, tst_optim = \ |
|
self.gen_param_optim(tensors, lamb_option) |
|
|
|
for i in range(self.iters): |
|
self.gen_grad(ref_param, tst_param) |
|
ref_optim.step() |
|
tst_optim.step() |
|
max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) |
|
self.assertLessEqual(max_abs_diff, self.max_abs_diff) |
|
self.assertLessEqual(max_rel_diff, self.max_rel_diff) |
|
|
|
def test_lamb_option(self): |
|
nelem = 1 |
|
tensor = torch.rand(nelem, dtype=torch.float, device='cuda') |
|
weight_decay = [0, 0.01] |
|
|
|
for wd in weight_decay: |
|
lamb_option = {'lr':0.01, 'betas':(0.6, 0.9), 'eps':3e-06, 'weight_decay':wd} |
|
ref_param, tst_param, ref_optim, tst_optim = \ |
|
self.gen_param_optim([tensor], lamb_option) |
|
|
|
for i in range(self.iters): |
|
self.gen_grad(ref_param, tst_param) |
|
ref_optim.step() |
|
tst_optim.step() |
|
max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) |
|
|
|
self.assertLessEqual(max_abs_diff, self.max_abs_diff) |
|
self.assertLessEqual(max_rel_diff, self.max_rel_diff) |
|
|
|
class TestFusedMixedPrecisionLamb(TestLamb): |
|
def __init__(self, *args, **kwargs): |
|
super(TestLamb, self).__init__(*args, **kwargs) |
|
self.ref_optim = RefLAMB |
|
self.tst_optim = apex.optimizers.FusedMixedPrecisionLamb |
|
|
|
|
|
def test_float(self): |
|
self.gen_single_type_test(param_type=torch.float) |
|
|
|
def test_bfloat16(self): |
|
self.iters = 4 |
|
self.gen_single_type_test(param_type=torch.bfloat16) |
|
|
|
def test_half(self): |
|
self.iters = 1 |
|
self.gen_single_type_test(param_type=torch.float16) |
|
|
|
@unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required") |
|
def test_multi_device(self): |
|
devices = ("cuda:0", "cuda:1") |
|
for current_dev, tensor_dev in product(devices, devices): |
|
with torch.cuda.device(current_dev): |
|
self.gen_single_type_test(param_type=torch.float, device=tensor_dev) |
|
|
|
def test_multi_params(self): |
|
sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]] |
|
weight_decay = [0, 0.01] |
|
|
|
for wd in weight_decay: |
|
lamb_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08, 'weight_decay':wd} |
|
tensors = [] |
|
for size in sizes: |
|
tensors.append(torch.rand(size, dtype=torch.float, device='cuda')) |
|
ref_param, tst_param, ref_optim, tst_optim = \ |
|
self.gen_param_optim(tensors, lamb_option) |
|
|
|
for i in range(self.iters): |
|
self.gen_grad(ref_param, tst_param) |
|
ref_optim.step() |
|
tst_optim.step() |
|
max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) |
|
self.assertLessEqual(max_abs_diff, self.max_abs_diff) |
|
self.assertLessEqual(max_rel_diff, self.max_rel_diff) |
|
|
|
def test_lamb_option(self): |
|
nelem = 1 |
|
tensor = torch.rand(nelem, dtype=torch.float, device='cuda') |
|
weight_decay = [0, 0.01] |
|
|
|
for wd in weight_decay: |
|
lamb_option = {'lr':0.01, 'betas':(0.6, 0.9), 'eps':3e-06, 'weight_decay':wd} |
|
ref_param, tst_param, ref_optim, tst_optim = \ |
|
self.gen_param_optim([tensor], lamb_option) |
|
|
|
for i in range(self.iters): |
|
self.gen_grad(ref_param, tst_param) |
|
ref_optim.step() |
|
tst_optim.step() |
|
max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) |
|
|
|
self.assertLessEqual(max_abs_diff, self.max_abs_diff) |
|
self.assertLessEqual(max_rel_diff, self.max_rel_diff) |
|
|
|
if __name__ == '__main__': |
|
script_path = os.path.dirname(os.path.realpath(__file__)) |
|
unittest.main() |
|
|