|
#include <ATen/ATen.h> |
|
#include <ATen/AccumulateType.h> |
|
#include <ATen/cuda/CUDAContext.h> |
|
#include <ATen/cuda/Exceptions.h> |
|
|
|
|
|
|
|
#include <assert.h> |
|
|
|
#include "type_shim.h" |
|
#include "multi_tensor_apply.cuh" |
|
|
|
#define BLOCK_SIZE 512 |
|
#define ILP 4 |
|
|
|
typedef enum{ |
|
MOMENT_MODE_0 =0, |
|
MOMENT_MODE_1 =1 |
|
} momentMode_t; |
|
|
|
void multi_tensor_norm_out_cuda( |
|
int chunk_size, |
|
at::Tensor noop_flag, |
|
std::vector<std::vector<at::Tensor>> tensor_lists, |
|
at::Tensor out, |
|
const float alpha, |
|
const float beta, |
|
const int norm_type); |
|
|
|
using MATH_T = float; |
|
|
|
template<typename T> |
|
struct NovoGradFunctor |
|
{ |
|
__device__ __forceinline__ void operator()( |
|
int chunk_size, |
|
volatile int* noop_gmem, |
|
TensorListMetadata<3>& tl, |
|
const float beta1, |
|
const float beta2, |
|
const float beta3, |
|
const float beta1_correction, |
|
const float beta2_correction, |
|
const float epsilon, |
|
const float lr, |
|
momentMode_t m_mode, |
|
const float decay, |
|
const float* per_tensor_grad_norm) |
|
{ |
|
|
|
|
|
|
|
|
|
int tensor_loc = tl.block_to_tensor[blockIdx.x]; |
|
int tensor_num = tl.start_tensor_this_launch + tensor_loc; |
|
int chunk_idx = tl.block_to_chunk[blockIdx.x]; |
|
int n = tl.sizes[tensor_loc]; |
|
|
|
float grad_norm = per_tensor_grad_norm[tensor_num]; |
|
|
|
T* g = (T*)tl.addresses[0][tensor_loc]; |
|
g += chunk_idx*chunk_size; |
|
|
|
T* p = (T*)tl.addresses[1][tensor_loc]; |
|
p += chunk_idx*chunk_size; |
|
|
|
T* m = (T*)tl.addresses[2][tensor_loc]; |
|
m += chunk_idx*chunk_size; |
|
|
|
n -= chunk_idx*chunk_size; |
|
|
|
|
|
for(int i_start = 0; |
|
i_start < n && i_start < chunk_size; |
|
i_start += blockDim.x*ILP) |
|
{ |
|
MATH_T r_g[ILP]; |
|
MATH_T r_p[ILP]; |
|
MATH_T r_m[ILP]; |
|
#pragma unroll |
|
for(int ii = 0; ii < ILP; ii++) |
|
{ |
|
int i = i_start + threadIdx.x + ii*blockDim.x; |
|
if(i < n && i < chunk_size) |
|
{ |
|
r_g[ii] = g[i]; |
|
r_p[ii] = p[i]; |
|
r_m[ii] = m[i]; |
|
} else { |
|
r_g[ii] = MATH_T(0); |
|
r_p[ii] = MATH_T(0); |
|
r_m[ii] = MATH_T(0); |
|
} |
|
} |
|
#pragma unroll |
|
for(int ii = 0; ii < ILP; ii++) |
|
{ |
|
if (m_mode == MOMENT_MODE_0) { |
|
MATH_T next_v_unbiased = grad_norm / beta2_correction; |
|
MATH_T denom = next_v_unbiased + epsilon; |
|
r_g[ii] = (r_g[ii] / denom) + (decay * r_p[ii]); |
|
r_m[ii] = beta1 * r_m[ii] + beta3 * r_g[ii]; |
|
MATH_T next_m_unbiased = r_m[ii] / beta1_correction; |
|
r_p[ii] = r_p[ii] - (lr * next_m_unbiased); |
|
} |
|
else { |
|
r_m[ii] = beta1 * r_m[ii] + beta3 * r_g[ii]; |
|
MATH_T next_m_unbiased = r_m[ii] / beta1_correction; |
|
MATH_T next_v_unbiased = grad_norm / beta2_correction; |
|
MATH_T denom = next_v_unbiased + epsilon; |
|
MATH_T update = (next_m_unbiased / denom) + (decay * r_p[ii]); |
|
r_p[ii] = r_p[ii] - (lr * update); |
|
} |
|
} |
|
#pragma unroll |
|
for(int ii = 0; ii < ILP; ii++) |
|
{ |
|
int i = i_start + threadIdx.x + ii*blockDim.x; |
|
if(i < n && i < chunk_size) |
|
{ |
|
p[i] = r_p[ii]; |
|
m[i] = r_m[ii]; |
|
} |
|
} |
|
} |
|
} |
|
}; |
|
|
|
void multi_tensor_novograd_cuda( |
|
int chunk_size, |
|
at::Tensor noop_flag, |
|
std::vector<std::vector<at::Tensor>> tensor_lists, |
|
at::Tensor grad_norms, |
|
const float lr, |
|
const float beta1, |
|
const float beta2, |
|
const float epsilon, |
|
const int step, |
|
const int bias_correction, |
|
const float weight_decay, |
|
const int grad_averaging, |
|
const int moment_mode, |
|
const int norm_type) |
|
{ |
|
using namespace at; |
|
|
|
|
|
float bias_correction1 = 1.0f, bias_correction2 = 1.0f; |
|
if (bias_correction == 1) { |
|
bias_correction1 = 1 - std::pow(beta1, step); |
|
bias_correction2 = std::sqrt(1 - std::pow(beta2, step)); |
|
} |
|
|
|
|
|
float beta3 = 1; |
|
if (grad_averaging == 1) beta3 = 1 - beta1; |
|
|
|
std::vector<std::vector<at::Tensor>> grad_list(tensor_lists.begin(), tensor_lists.begin()+1); |
|
|
|
|
|
|
|
|
|
|
|
multi_tensor_norm_out_cuda(chunk_size, noop_flag, grad_list, grad_norms, beta2, (1.0f - beta2), norm_type); |
|
|
|
|
|
DISPATCH_DOUBLE_FLOAT_AND_HALF( |
|
tensor_lists[0][0].scalar_type(), 0, "novograd", |
|
multi_tensor_apply<3>( |
|
BLOCK_SIZE, |
|
chunk_size, |
|
noop_flag, |
|
tensor_lists, |
|
NovoGradFunctor<scalar_t_0>(), |
|
beta1, |
|
beta2, |
|
beta3, |
|
bias_correction1, |
|
bias_correction2, |
|
epsilon, |
|
lr, |
|
(momentMode_t) moment_mode, |
|
weight_decay, |
|
grad_norms.DATA_PTR<float>()); ) |
|
|
|
AT_CUDA_CHECK(cudaGetLastError()); |
|
|
|
} |
|
|