import logging import warnings # May help avoid undefined symbol errors https://pytorch.org/cppdocs/notes/faq.html#undefined-symbol-errors-from-pytorch-aten import torch __all__ = ["amp", "fp16_utils", "optimizers", "normalization", "transformer"] if torch.distributed.is_available(): from . import parallel __all__.append("parallel") from . import amp from . import fp16_utils # For optimizers and normalization there is no Python fallback. # Absence of cuda backend is a hard error. # I would like the errors from importing fused_adam_cuda or fused_layer_norm_cuda # to be triggered lazily, because if someone has installed with --cpp_ext and --cuda_ext # so they expect those backends to be available, but for some reason they actually aren't # available (for example because they built improperly in a way that isn't revealed until # load time) the error message is timely and visible. from . import optimizers from . import normalization from . import transformer # Logging utilities for apex.transformer module class RankInfoFormatter(logging.Formatter): def format(self, record): from apex.transformer.parallel_state import get_rank_info record.rank_info = get_rank_info() return super().format(record) _library_root_logger = logging.getLogger(__name__) handler = logging.StreamHandler() handler.setFormatter(RankInfoFormatter("%(asctime)s - PID:%(process)d - rank:%(rank_info)s - %(filename)s:%(lineno)d - %(levelname)s - %(message)s", "%y-%m-%d %H:%M:%S")) _library_root_logger.addHandler(handler) _library_root_logger.propagate = False def check_cudnn_version_and_warn(global_option: str, required_cudnn_version: int) -> bool: cudnn_available = torch.backends.cudnn.is_available() cudnn_version = torch.backends.cudnn.version() if cudnn_available else None if not (cudnn_available and (cudnn_version >= required_cudnn_version)): warnings.warn( f"`{global_option}` depends on cuDNN {required_cudnn_version} or later, " f"but {'cuDNN is not available' if not cudnn_available else cudnn_version}" ) return False return True class DeprecatedFeatureWarning(FutureWarning): pass def deprecated_warning(msg: str) -> None: if ( not torch.distributed.is_available or not torch.distributed.is_initialized() or (torch.distributed.is_initialized() and torch.distributed.get_rank() == 0) ): warnings.warn(msg, DeprecatedFeatureWarning)