funasr-svsmall / app.py
TaiYouWeb's picture
Update app.py
56bdf87 verified
raw
history blame
5.8 kB
from funasr import AutoModel
from funasr.utils.postprocess_utils import rich_transcription_postprocess
from modelscope import snapshot_download
import io
import os
import tempfile
import json
from typing import Optional
import torch
import gradio as gr # 添加Gradio库
from config import model_config
from fastapi import FastAPI, File, Form, UploadFile, HTTPException
from fastapi.responses import StreamingResponse, Response
import uvicorn
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model_dir = snapshot_download(model_config['model_dir'])
# 初始化模型
model = AutoModel(
model=model_dir,
trust_remote_code=False,
remote_code="./model.py",
vad_model="fsmn-vad",
vad_kwargs={"max_single_segment_time": 30000},
ncpu=4,
batch_size=1,
hub="ms",
device=device,
)
def transcribe_audio(file_path, vad_model="fsmn-vad", vad_kwargs='{"max_single_segment_time": 30000}',
ncpu=4, batch_size=1, language="auto", use_itn=True, batch_size_s=60,
merge_vad=True, merge_length_s=15, batch_size_threshold_s=50,
hotword=" ", spk_model="cam++", ban_emo_unk=False):
try:
# 将字符串转换为字典
vad_kwargs = json.loads(vad_kwargs)
# 使用文件路径作为输入
temp_file_path = file_path
# 生成结果
res = model.generate(
input=temp_file_path, # 使用文件路径作为输入
cache={},
language=language,
use_itn=use_itn,
batch_size_s=batch_size_s,
merge_vad=merge_vad,
merge_length_s=merge_length_s,
batch_size_threshold_s=batch_size_threshold_s,
hotword=hotword,
spk_model=spk_model,
ban_emo_unk=ban_emo_unk
)
# 处理结果
text = rich_transcription_postprocess(res[0]["text"])
return text
except Exception as e:
# 捕获异常并返回错误信息
return str(e)
# 创建Gradio界面
inputs = [
gr.Audio(type="filepath"), # 设置为'filepath'来支持文件路径
gr.Textbox(value="fsmn-vad", label="VAD Model"),
gr.Textbox(value='{"max_single_segment_time": 30000}', label="VAD Kwargs"),
gr.Slider(1, 8, value=4, step=1, label="NCPU"),
gr.Slider(1, 10, value=1, step=1, label="Batch Size"),
gr.Textbox(value="auto", label="Language"),
gr.Checkbox(value=True, label="Use ITN"),
gr.Slider(30, 120, value=60, step=1, label="Batch Size (seconds)"),
gr.Checkbox(value=True, label="Merge VAD"),
gr.Slider(5, 60, value=15, step=1, label="Merge Length (seconds)"),
gr.Slider(10, 100, value=50, step=1, label="Batch Size Threshold (seconds)"),
gr.Textbox(value=" ", label="Hotword"),
gr.Textbox(value="cam++", label="Speaker Model"),
gr.Checkbox(value=False, label="Ban Emotional Unknown"),
]
outputs = gr.Textbox(label="Transcription")
gr.Interface(
fn=transcribe_audio,
inputs=inputs,
outputs=outputs,
title="ASR Transcription with FunASR"
).launch()
class SynthesizeResponse(Response):
media_type = 'text/plain'
app = FastAPI()
@app.post('/asr', response_class=SynthesizeResponse)
async def generate(
file: UploadFile = File(...),
vad_model: str = Form("fsmn-vad"),
vad_kwargs: str = Form('{"max_single_segment_time": 30000}'),
ncpu: int = Form(4),
batch_size: int = Form(1),
language: str = Form("auto"),
use_itn: bool = Form(True),
batch_size_s: int = Form(60),
merge_vad: bool = Form(True),
merge_length_s: int = Form(15),
batch_size_threshold_s: int = Form(50),
hotword: Optional[str] = Form(" "),
spk_model: str = Form("cam++"),
ban_emo_unk: bool = Form(False),
) -> StreamingResponse:
try:
# 将字符串转换为字典
vad_kwargs = json.loads(vad_kwargs)
# 创建临时文件并保存上传的音频文件
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
temp_file_path = temp_file.name
input_wav_bytes = await file.read()
temp_file.write(input_wav_bytes)
try:
# 初始化模型
model = AutoModel(
model=model_dir,
trust_remote_code=False,
remote_code="./model.py",
vad_model=vad_model,
vad_kwargs=vad_kwargs,
ncpu=ncpu,
batch_size=batch_size,
hub="ms",
device=device,
)
# 生成结果
res = model.generate(
input=temp_file_path, # 使用临时文件路径作为输入
cache={},
language=language,
use_itn=use_itn,
batch_size_s=batch_size_s,
merge_vad=merge_vad,
merge_length_s=merge_length_s,
batch_size_threshold_s=batch_size_threshold_s,
hotword=hotword,
spk_model=spk_model,
ban_emo_unk=ban_emo_unk
)
# 处理结果
text = rich_transcription_postprocess(res[0]["text"])
# 返回结果
return StreamingResponse(io.BytesIO(text.encode('utf-8')), media_type="text/plain")
finally:
# 确保在处理完毕后删除临时文件
if os.path.exists(temp_file_path):
os.remove(temp_file_path)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/root")
async def read_root():
return {"message": "Hello World"}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)