import gradio as gr from transformers import pipeline # Load AI model (FLAN-T5 for food recognition & substitution) food_model = pipeline("text2text-generation", model="google/flan-t5-small") # Function to get calorie data & substitute using AI def get_food_substitute(food, portion_size): # AI model processes input and provides a structured response query = f"Suggest a lower-calorie substitute for {food}. Format: Original Food - Calories, Substitute - Calories" response = food_model(query, max_length=100, truncation=True)[0]['generated_text'] # Try to extract structured values from AI response try: parts = response.split(", ") if len(parts) < 4: return "AI model returned incomplete data. Try another food item." original_food, original_calories, substitute, substitute_calories = parts original_calories = float(original_calories.split(" ")[0]) * portion_size / 100 substitute_calories = float(substitute_calories.split(" ")[0]) * portion_size / 100 calories_saved = original_calories - substitute_calories return ( f"**Original Food:** {original_food} ({original_calories:.2f} kcal)\n" f"**Suggested Substitute:** {substitute} ({substitute_calories:.2f} kcal)\n" f"**Calories Saved:** {calories_saved:.2f} kcal" ) except Exception as e: return f"Error: AI model output format incorrect. Details: {str(e)}" # Gradio UI with gr.Blocks() as app: gr.Markdown("# 🍽️ DeepCalorie - AI-Powered Food Substitute Finder") gr.Markdown("Enter a food item, and get a **lower-calorie alternative** along with calories saved.") with gr.Row(): food_input = gr.Textbox(label="Enter Food/Dish") portion_input = gr.Number(label="Portion Size (grams)", value=100) submit_button = gr.Button("Find Substitute") output = gr.Markdown() submit_button.click(get_food_substitute, inputs=[food_input, portion_input], outputs=output) # Run the app if __name__ == "__main__": app.launch()