Update app.py
Browse files
app.py
CHANGED
@@ -4,11 +4,16 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
4 |
import gradio as gr
|
5 |
from huggingface_hub import login
|
6 |
|
7 |
-
# Load API token securely
|
8 |
HF_TOKEN = os.getenv("HF_TOKEN") # Read token from environment variable
|
9 |
login(token=HF_TOKEN)
|
10 |
|
11 |
-
#
|
|
|
|
|
|
|
|
|
|
|
12 |
personalities = {
|
13 |
"Albert Einstein": "You are Albert Einstein, the famous physicist. Speak wisely and humorously.",
|
14 |
"Cristiano Ronaldo": "You are Cristiano Ronaldo, the world-famous footballer. You are confident and say ‘Siuuu!’ often.",
|
@@ -16,28 +21,26 @@ personalities = {
|
|
16 |
"Robert Downey Jr.": "You are Robert Downey Jr., witty, sarcastic, and charismatic."
|
17 |
}
|
18 |
|
19 |
-
# Load Llama-2 Model
|
20 |
-
model_name = "meta-llama/Llama-2-7b-chat-hf"
|
21 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=True)
|
22 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto", use_auth_token=True)
|
23 |
-
|
24 |
# Chat function
|
25 |
def chat(personality, user_input):
|
26 |
prompt = f"{personalities[personality]}\nUser: {user_input}\nAI:"
|
27 |
-
inputs = tokenizer(prompt, return_tensors="pt").to("
|
28 |
-
output = model.generate(**inputs, max_length=
|
29 |
-
|
|
|
|
|
30 |
|
31 |
-
#
|
32 |
demo = gr.Interface(
|
33 |
fn=chat,
|
34 |
inputs=[
|
35 |
gr.Dropdown(choices=list(personalities.keys()), label="Choose a Celebrity"),
|
36 |
-
"
|
37 |
],
|
38 |
-
outputs="
|
39 |
title="Drapel – Chat with AI Celebrities",
|
40 |
description="Select a character and chat with their AI version.",
|
41 |
)
|
42 |
|
|
|
43 |
demo.launch()
|
|
|
4 |
import gradio as gr
|
5 |
from huggingface_hub import login
|
6 |
|
7 |
+
# Load Hugging Face API token securely
|
8 |
HF_TOKEN = os.getenv("HF_TOKEN") # Read token from environment variable
|
9 |
login(token=HF_TOKEN)
|
10 |
|
11 |
+
# ✅ Using a lightweight Llama-2 model that works on CPU
|
12 |
+
model_name = "TheBloke/Llama-2-7B-Chat-GGML" # 4-bit quantized model (CPU-friendly)
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float32, device_map="cpu")
|
15 |
+
|
16 |
+
# Define personalities
|
17 |
personalities = {
|
18 |
"Albert Einstein": "You are Albert Einstein, the famous physicist. Speak wisely and humorously.",
|
19 |
"Cristiano Ronaldo": "You are Cristiano Ronaldo, the world-famous footballer. You are confident and say ‘Siuuu!’ often.",
|
|
|
21 |
"Robert Downey Jr.": "You are Robert Downey Jr., witty, sarcastic, and charismatic."
|
22 |
}
|
23 |
|
|
|
|
|
|
|
|
|
|
|
24 |
# Chat function
|
25 |
def chat(personality, user_input):
|
26 |
prompt = f"{personalities[personality]}\nUser: {user_input}\nAI:"
|
27 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cpu") # Running on CPU
|
28 |
+
output = model.generate(**inputs, max_length=300)
|
29 |
+
|
30 |
+
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
31 |
+
return response_text
|
32 |
|
33 |
+
# Gradio UI
|
34 |
demo = gr.Interface(
|
35 |
fn=chat,
|
36 |
inputs=[
|
37 |
gr.Dropdown(choices=list(personalities.keys()), label="Choose a Celebrity"),
|
38 |
+
gr.Textbox(label="Your Message")
|
39 |
],
|
40 |
+
outputs=gr.Textbox(label="AI Response"),
|
41 |
title="Drapel – Chat with AI Celebrities",
|
42 |
description="Select a character and chat with their AI version.",
|
43 |
)
|
44 |
|
45 |
+
# Launch app
|
46 |
demo.launch()
|