Spaces:
Running
Running
File size: 10,143 Bytes
761e949 7bce5e6 67adba9 761e949 7bce5e6 761e949 96569b8 761e949 7bce5e6 761e949 7bce5e6 96569b8 761e949 7461bb9 761e949 67adba9 761e949 f4b04e0 761e949 7461bb9 761e949 a11b9a1 761e949 7461bb9 8a81f3a 761e949 8a81f3a 765211f 761e949 765211f 761e949 f4b04e0 761e949 f4b04e0 761e949 f4b04e0 765211f 761e949 f4b04e0 765211f f4b04e0 765211f f4b04e0 765211f f4b04e0 761e949 f4b04e0 761e949 f4b04e0 765211f 761e949 f4b04e0 761e949 f4b04e0 765211f 761e949 f4b04e0 765211f 761e949 f4b04e0 765211f 761e949 f4b04e0 761e949 f4b04e0 761e949 f4b04e0 765211f f4b04e0 761e949 f4b04e0 765211f f4b04e0 761e949 f4b04e0 765211f 761e949 f4b04e0 761e949 f4b04e0 765211f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import sympy as sp
from sympy.parsing.sympy_parser import parse_expr, standard_transformations, implicit_multiplication_application
from sympy.solvers import solve
from sympy import integrate, diff, latex,simplify, expand, log, exp, sin, cos, tan, asin, acos, atan, Symbol, factorial, laplace_transform
import re
def format_expression(expr):
latex_expr = latex(expr)
replacements = {
'**': '^', # Power notation
'*x': 'x', # Remove unnecessary multiplication signs
'*(': '(', # Remove multiplication before parentheses
'exp': 'e^', # Exponential notation
'sqrt': '√', # Square root
'factorial': '!', # Factorial symbol
'gamma': 'Γ', # Gamma function
'Gamma': 'Γ', # Sometimes SymPy capitalizes it
'fresnels': 'S', # Fresnel S integral
'fresnelc': 'C', # Fresnel C integral
'hyper': '₁F₂', # Generalized hypergeometric function
'log': 'ln', # Natural logarithm
'oo': '∞', # Infinity symbol
'pi': 'π', # Pi symbol
'E': 'ℯ', # Euler's constant
'I': '𝒊', # Imaginary unit
'Abs': '|', # Absolute value
'Integral': '∫', # Integral symbol
'Derivative': 'd/dx', # Differentiation
'Sum': 'Σ', # Summation symbol
'Product': '∏', # Product symbol
'sin': 'sin', 'cos': 'cos', 'tan': 'tan', # Trig functions (unchanged)
'asin': 'sin⁻¹', 'acos': 'cos⁻¹', 'atan': 'tan⁻¹', # Inverse trig
'sinh': 'sinh', 'cosh': 'cosh', 'tanh': 'tanh', # Hyperbolic trig
'asinh': 'sinh⁻¹', 'acosh': 'cosh⁻¹', 'atanh': 'tanh⁻¹', # Inverse hyperbolic trig
'diff': 'd/dx', # Derivative notation
'integrate': '∫', # Integral notation
'Limit': 'lim', # Limit notation
'floor': '⌊', # Floor function
'ceiling': '⌈', # Ceiling function
'mod': 'mod', # Modulus (unchanged)
'Re': 'ℜ', # Real part
'Im': 'ℑ' # Imaginary part
}
for old, new in replacements.items():
latex_expr = latex_expr.replace(old, new)
return f"$$ {latex_expr} $$"
def preprocess_equation(equation_str):
"""Convert user-friendly equation format to SymPy format."""
try:
# Replace common mathematical notations
replacements = {
'^': '**',
'sin⁻¹': 'asin',
'cos⁻¹': 'acos',
'tan⁻¹': 'atan',
'e^': 'exp',
'ln': 'log', # Convert ln to log (SymPy default)
'√': 'sqrt', # Convert square root symbol to sqrt()
'!': '.factorial()', # Convert factorial to function call
}
for old, new in replacements.items():
equation_str = equation_str.replace(old, new)
equation_str = re.sub(r'(\d+)!', r'factorial(\1)', equation_str)
# Handle exponential expressions
if 'exp' in equation_str:
parts = equation_str.split('exp')
for i in range(1, len(parts)):
if parts[i] and parts[i][0] != '(':
parts[i] = '(' + parts[i]
if '=' in parts[i]:
exp_part, rest = parts[i].split('=', 1)
parts[i] = exp_part + ')=' + rest
else:
parts[i] = parts[i] + ')'
equation_str = 'exp'.join(parts)
# Add multiplication symbol where needed
processed = ''
i = 0
while i < len(equation_str):
if i + 1 < len(equation_str):
if equation_str[i].isdigit() and equation_str[i+1] == 'x':
processed += equation_str[i] + '*'
i += 1
continue
processed += equation_str[i]
i += 1
return processed
except Exception as e:
raise Exception(f"Error in equation format: {str(e)}")
def process_expression(expr_str):
"""Process mathematical expressions without equations."""
try:
processed_expr = preprocess_equation(expr_str)
x = Symbol('x')
if expr_str.startswith('∫'): # Integration
expr_to_integrate = processed_expr[1:].strip()
expr = parse_expr(expr_to_integrate, transformations=(standard_transformations + (implicit_multiplication_application,)))
result = integrate(expr, x)
return f"∫{format_expression(expr)} = {format_expression(result)}"
elif expr_str.startswith('d/dx'): # Differentiation
expr_to_diff = processed_expr[4:].strip()
if expr_to_diff.startswith('(') and expr_to_diff.endswith(')'):
expr_to_diff = expr_to_diff[1:-1]
expr = parse_expr(expr_to_diff, transformations=(standard_transformations + (implicit_multiplication_application,)))
result = diff(expr, x)
return f"d/dx({format_expression(expr)}) = {format_expression(result)}"
elif 'factorial' in processed_expr: # Factorial case
expr = parse_expr(processed_expr, transformations=(standard_transformations + (implicit_multiplication_application,)))
result = expr.doit() # Compute the factorial correctly
return f"{format_expression(expr)} = {result}"
elif '/' in expr_str: # Handle fractions and return decimal
expr = parse_expr(processed_expr, transformations=(standard_transformations + (implicit_multiplication_application,)))
simplified = simplify(expr)
decimal_value = float(simplified)
return f"Simplified: {format_expression(simplified)}\nDecimal: {decimal_value}"
else: # Regular expression simplification
expr = parse_expr(processed_expr, transformations=(standard_transformations + (implicit_multiplication_application,)))
simplified = simplify(expr)
expanded = expand(simplified)
return f"Simplified: {format_expression(simplified)}\nExpanded: {format_expression(expanded)}"
except Exception as e:
raise Exception(f"Error processing expression: {str(e)}")
except Exception as e:
raise Exception(f"Error processing expression: {str(e)}")
def to_latex(expr):
"""Converts a SymPy expression into LaTeX format."""
return f"$$ {sp.latex(expr)} $$"
def solve_equation(equation_str):
"""Solves an equation and returns a detailed LaTeX-formatted step-by-step solution."""
try:
if '=' not in equation_str:
return process_expression(equation_str)
left_side, right_side = [side.strip() for side in equation_str.split('=')]
transformations = standard_transformations + (implicit_multiplication_application,)
left_expr = sp.parse_expr(left_side, transformations=transformations)
right_expr = sp.parse_expr(right_side, transformations=transformations)
equation = left_expr - right_expr
x = Symbol('x')
solutions = solve(equation, x)
steps = []
steps.append(f"**Step 1:** Original equation: \n{to_latex(left_expr)} = {to_latex(right_expr)}")
steps.append(f"**Step 2:** Move all terms to one side: \n{to_latex(equation)} = 0")
factored = sp.factor(equation)
if factored != equation:
steps.append(f"**Step 3:** Factorizing the equation: \n{to_latex(factored)} = 0")
steps.append(f"**Step 4:** Solving for x:")
for sol in solutions:
steps.append(f" x = {to_latex(sol)}")
steps.append("**Step 5:** Verification:")
for sol in solutions:
verification = equation.subs(x, sol)
steps.append(f" When x = {to_latex(sol)}, the equation evaluates to {to_latex(verification)}")
return "\n".join(steps)
except Exception as e:
return f"Error: {str(e)}"
def integrate_expression(expression_str):
"""Computes the integral of a given expression and provides detailed LaTeX-formatted steps."""
try:
x = Symbol('x')
expr = sp.parse_expr(expression_str, transformations=standard_transformations + (implicit_multiplication_application,))
steps = []
steps.append(f"**Step 1:** Original integral: \n$$ \\int {sp.latex(expr)} \\,dx $$")
if '^' in expression_str:
steps.append("**Step 2:** Checking if substitution is needed.")
result = integrate(expr, x)
steps.append(f"**Step 3:** Applying integration formula(s):")
steps.append(f"$$ \\int f(x) \\,dx = F(x) + C $$")
steps.append(f"**Step 4:** Solution: \n$$ {sp.latex(result)} + C $$")
return "\n".join(steps)
except Exception as e:
return f"Error: {str(e)}"
def laplace_transform_expression(expression_str):
"""Computes the Laplace transform of a given expression with LaTeX-formatted steps."""
try:
t, s = sp.symbols('t s')
expr = sp.parse_expr(expression_str, transformations=standard_transformations + (implicit_multiplication_application,))
steps = []
steps.append(f"**Step 1:** Original function: \n$$ \\mathcal{L}\\{{ {sp.latex(expr)} \\}}(t) $$")
L_transform = laplace_transform(expr, t, s, noconds=True)
steps.append(f"**Step 2:** Applying Laplace Transform:")
steps.append("$$ \\mathcal{L}\\{ f(t) \\} = \\int_{0}^{\\infty} e^{-st} f(t) \\,dt $$")
steps.append(f"**Step 3:** Solution: \n$$ {sp.latex(L_transform)} $$")
return "\n".join(steps)
except Exception as e:
return f"Error: {str(e)}"
def process_input(equation):
"""Determine whether the input is an equation, an integral, or a Laplace transform."""
try:
if "laplace" in equation.lower():
solution = laplace_transform_expression(equation)
elif "integrate" in equation.lower():
solution = integrate_expression(equation)
else:
solution = solve_equation(equation)
return solution
except Exception as e:
return f"Error processing input: {str(e)}" |