Spaces:
Running
Running
File size: 11,642 Bytes
761e949 e3ba37d 67adba9 761e949 4c66c38 96569b8 761e949 4c66c38 96569b8 761e949 7461bb9 761e949 67adba9 761e949 4c66c38 e3ba37d 2bad1d3 e3ba37d 2bad1d3 e3ba37d 2bad1d3 e3ba37d 2bad1d3 e3ba37d 2bad1d3 e3ba37d 2bad1d3 7461bb9 761e949 a11b9a1 761e949 7461bb9 8a81f3a 761e949 8a81f3a 761e949 ca22451 761e949 ca22451 761e949 ca22451 761e949 ca22451 761e949 ca22451 761e949 ca22451 f4b04e0 ca22451 761e949 ca22451 761e949 ca22451 761e949 ca22451 761e949 ca22451 761e949 ca22451 761e949 ca22451 761e949 ca22451 f4b04e0 ca22451 761e949 ca22451 761e949 ca22451 761e949 ca22451 765211f ca22451 765211f ca22451 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import sympy as sp
from sympy.parsing.sympy_parser import parse_expr, standard_transformations, implicit_multiplication_application
from sympy.solvers import solve
from sympy import integrate, diff, latex,simplify, expand,sqrt, log, exp, sin, cos, tan, asin, acos, atan, Symbol, factorial, laplace_transform
import re
def format_expression(expr):
latex_expr = latex(expr)
replacements = {
'**': '^', # Power notation
'*x': 'x', # Remove unnecessary multiplication signs
'*(': '(', # Remove multiplication before parentheses
'exp': 'e^', # Exponential notation
'sqrt': '√', # Square root
'factorial': '!', # Factorial symbol
'gamma': 'Γ', # Gamma function
'Gamma': 'Γ', # Sometimes SymPy capitalizes it
'fresnels': 'S', # Fresnel S integral
'fresnelc': 'C', # Fresnel C integral
'hyper': '₁F₂', # Generalized hypergeometric function
'log': 'ln', # Natural logarithm
'oo': '∞', # Infinity symbol
'pi': 'π', # Pi symbol
'E': 'ℯ', # Euler's constant
'I': '𝒊', # Imaginary unit
'Abs': '|', # Absolute value
'Integral': '∫', # Integral symbol
'Derivative': 'd/dx', # Differentiation
'Sum': 'Σ', # Summation symbol
'Product': '∏', # Product symbol
'sin': 'sin', 'cos': 'cos', 'tan': 'tan', # Trig functions (unchanged)
'asin': 'sin⁻¹', 'acos': 'cos⁻¹', 'atan': 'tan⁻¹', # Inverse trig
'sinh': 'sinh', 'cosh': 'cosh', 'tanh': 'tanh', # Hyperbolic trig
'asinh': 'sinh⁻¹', 'acosh': 'cosh⁻¹', 'atanh': 'tanh⁻¹', # Inverse hyperbolic trig
'diff': 'd/dx', # Derivative notation
'integrate': '∫', # Integral notation
'Limit': 'lim', # Limit notation
'floor': '⌊', # Floor function
'ceiling': '⌈', # Ceiling function
'mod': 'mod', # Modulus (unchanged)
'Re': 'ℜ', # Real part
'Im': 'ℑ' # Imaginary part
}
for old, new in replacements.items():
latex_expr = latex_expr.replace(old, new)
return f"$$ {latex_expr} $$"
def preprocess_equation(equation_str):
"""Convert user-friendly equation format to SymPy format."""
try:
# Replace common mathematical notations
replacements = {
'^': '**',
'sin⁻¹': 'asin',
'cos⁻¹': 'acos',
'tan⁻¹': 'atan',
'e^': 'exp',
'ln': 'log', # Convert ln to log (SymPy default)
'√': 'sqrt', # Convert square root symbol to sqrt()
'!': '.factorial()', # Convert factorial to function call
}
for old, new in replacements.items():
equation_str = equation_str.replace(old, new)
equation_str = re.sub(r'(\d+)!', r'factorial(\1)', equation_str)
# Handle exponential expressions
if 'exp' in equation_str:
parts = equation_str.split('exp')
for i in range(1, len(parts)):
if parts[i] and parts[i][0] != '(':
parts[i] = '(' + parts[i]
if '=' in parts[i]:
exp_part, rest = parts[i].split('=', 1)
parts[i] = exp_part + ')=' + rest
else:
parts[i] = parts[i] + ')'
equation_str = 'exp'.join(parts)
# Add multiplication symbol where needed
processed = ''
i = 0
while i < len(equation_str):
if i + 1 < len(equation_str):
if equation_str[i].isdigit() and equation_str[i+1] == 'x':
processed += equation_str[i] + '*'
i += 1
continue
processed += equation_str[i]
i += 1
return processed
except Exception as e:
raise Exception(f"Error in equation format: {str(e)}")
def process_expression(expr_str):
"""Process mathematical expressions without equations."""
try:
processed_expr = preprocess_equation(expr_str)
x = Symbol('x')
if expr_str.startswith('∫'): # Integration
expr_to_integrate = processed_expr[1:].strip()
expr = parse_expr(expr_to_integrate, transformations=(standard_transformations + (implicit_multiplication_application,)))
result = integrate(expr, x)
return f"∫{format_expression(expr)} = {format_expression(result)}"
elif expr_str.startswith('d/dx'): # Differentiation
expr_to_diff = processed_expr[4:].strip()
if expr_to_diff.startswith('(') and expr_to_diff.endswith(')'):
expr_to_diff = expr_to_diff[1:-1]
expr = parse_expr(expr_to_diff, transformations=(standard_transformations + (implicit_multiplication_application,)))
result = diff(expr, x)
return f"d/dx({format_expression(expr)}) = {format_expression(result)}"
elif 'sqrt' in processed_expr.lower():
try:
transformations = standard_transformations + (implicit_multiplication_application,)
# Remove "sqrt" and parse the expression inside
expr = sp.parse_expr(processed_expr.replace("sqrt", ""), transformations=transformations)
sqrt_result = sp.sqrt(expr)
# If it's sqrt(x^2), simplify it to |x|
simplified_result = sp.simplify(sqrt_result)
steps = []
steps.append(f"**Step 1:** Original expression: \n{to_latex(expr)}")
# Case 1: Perfect Squares → Show exact value (e.g., sqrt(9) = ±3)
if sqrt_result.is_Integer:
steps.append(f"**Step 2:** √{to_latex(expr)} is a perfect square")
steps.append(f"**Step 3:** Solution: \n±{to_latex(sqrt_result)}")
solution = "\n".join(steps)
# Case 2: Non-Perfect Squares → Show decimal value (e.g., sqrt(2) ≈ 1.41)
elif sqrt_result.is_real and not sqrt_result.is_rational:
decimal_value = float(sqrt_result.evalf())
steps.append(f"**Step 2:** √{to_latex(expr)} is not a perfect square")
steps.append(f"**Step 3:** Approximate value: \n{decimal_value}")
solution = "\n".join(steps)
# Case 3: Expressions like √x² → |x|
elif simplified_result != sqrt_result:
steps.append(f"**Step 2:** Simplification using identity: \n{to_latex(simplified_result)}")
solution = "\n".join(steps)
# Case 4: General Expression → Return as-is
else:
steps.append(f"**Step 2:** Taking square root: \n{to_latex(sqrt_result)}")
steps.append(f"**Step 3:** Considering both positive and negative roots: \n±{to_latex(sqrt_result)}")
solution = "\n".join(steps)
except Exception as e:
solution = f"Error: {str(e)}"
elif 'factorial' in processed_expr: # Factorial case
expr = parse_expr(processed_expr, transformations=(standard_transformations + (implicit_multiplication_application,)))
result = expr.doit() # Compute the factorial correctly
return f"{format_expression(expr)} = {result}"
elif '/' in expr_str: # Handle fractions and return decimal
expr = parse_expr(processed_expr, transformations=(standard_transformations + (implicit_multiplication_application,)))
simplified = simplify(expr)
decimal_value = float(simplified)
return f"Simplified: {format_expression(simplified)}\nDecimal: {decimal_value}"
else: # Regular expression simplification
expr = parse_expr(processed_expr, transformations=(standard_transformations + (implicit_multiplication_application,)))
simplified = simplify(expr)
expanded = expand(simplified)
return f"Simplified: {format_expression(simplified)}\nExpanded: {format_expression(expanded)}"
except Exception as e:
raise Exception(f"Error processing expression: {str(e)}")
except Exception as e:
raise Exception(f"Error processing expression: {str(e)}")
def solve_equation(equation_str):
"""Solve the given equation and return the solution."""
try:
if '=' not in equation_str:
return process_expression(equation_str)
# Preprocess equation
equation_str = preprocess_equation(equation_str)
# Split equation into left and right parts
left_side, right_side = [side.strip() for side in equation_str.split('=')]
# Parse both sides with implicit multiplication
transformations = standard_transformations + (implicit_multiplication_application,)
left_expr = parse_expr(left_side, transformations=transformations)
right_expr = parse_expr(right_side, transformations=transformations)
equation = left_expr - right_expr
# Solve the equation
x = Symbol('x')
solution = solve(equation, x)
# Format solution
if len(solution) == 0:
return "No solution exists"
elif len(solution) == 1:
return f"x = {format_expression(solution[0])}"
else:
return "x = " + ", ".join([format_expression(sol) for sol in solution])
except Exception as e:
raise Exception(f"Invalid equation format: {str(e)}")
def generate_steps(equation_str):
"""Generate step-by-step solution for the equation or expression."""
steps = []
try:
if '=' not in equation_str:
steps.append(f"1. Original expression: {equation_str}")
result = process_expression(equation_str)
steps.append(f"2. Result: {result}")
return steps
# Preprocess equation
processed_eq = preprocess_equation(equation_str)
# Split equation into left and right parts
left_side, right_side = [side.strip() for side in processed_eq.split('=')]
# Parse expressions with implicit multiplication
transformations = standard_transformations + (implicit_multiplication_application,)
left_expr = parse_expr(left_side, transformations=transformations)
right_expr = parse_expr(right_side, transformations=transformations)
# Step 1: Show original equation
steps.append(f"1. Original equation: {format_expression(left_expr)} = {format_expression(right_expr)}")
# Step 2: Move all terms to left side
equation = left_expr - right_expr
steps.append(f"2. Move all terms to left side: {format_expression(equation)} = 0")
# Step 3: Factor if possible
factored = sp.factor(equation)
if factored != equation:
steps.append(f"3. Factor the equation: {format_expression(factored)} = 0")
# Step 4: Solve
x = Symbol('x')
solution = solve(equation, x)
steps.append(f"4. Solve for x: x = {', '.join([format_expression(sol) for sol in solution])}")
# Step 5: Verify solutions
steps.append("5. Verify solutions:")
for sol in solution:
result = equation.subs(x, sol)
steps.append(f" When x = {format_expression(sol)}, equation equals {format_expression(result)}")
return steps
except Exception as e:
raise Exception(f"Error generating steps: {str(e)}") |