Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 3 |
+
import scipy.io.wavfile as wavfile
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
|
| 6 |
+
# Load pipelines
|
| 7 |
+
narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs")
|
| 8 |
+
object_detector = pipeline("object-detection", model="facebook/detr-resnet-50")
|
| 9 |
+
|
| 10 |
+
# Function to generate audio from text
|
| 11 |
+
def generate_audio(text):
|
| 12 |
+
narrated_text = narrator(text)
|
| 13 |
+
wavfile.write("output.wav", rate=narrated_text["sampling_rate"], data=narrated_text["audio"][0])
|
| 14 |
+
return "output.wav"
|
| 15 |
+
|
| 16 |
+
# Function to read and summarize detected objects
|
| 17 |
+
def read_objects(detection_objects):
|
| 18 |
+
object_counts = {}
|
| 19 |
+
for detection in detection_objects:
|
| 20 |
+
label = detection['label']
|
| 21 |
+
object_counts[label] = object_counts.get(label, 0) + 1
|
| 22 |
+
|
| 23 |
+
response = "This picture contains"
|
| 24 |
+
labels = list(object_counts.keys())
|
| 25 |
+
for i, label in enumerate(labels):
|
| 26 |
+
response += f" {object_counts[label]} {label}"
|
| 27 |
+
if object_counts[label] > 1:
|
| 28 |
+
response += "s"
|
| 29 |
+
if i < len(labels) - 2:
|
| 30 |
+
response += ","
|
| 31 |
+
elif i == len(labels) - 2:
|
| 32 |
+
response += " and"
|
| 33 |
+
response += "."
|
| 34 |
+
return response
|
| 35 |
+
|
| 36 |
+
# Function to draw bounding boxes on the image
|
| 37 |
+
def draw_bounding_boxes(image, detections):
|
| 38 |
+
draw_image = image.copy()
|
| 39 |
+
draw = ImageDraw.Draw(draw_image)
|
| 40 |
+
font = ImageFont.load_default()
|
| 41 |
+
|
| 42 |
+
for detection in detections:
|
| 43 |
+
box = detection['box']
|
| 44 |
+
xmin, ymin, xmax, ymax = box['xmin'], box['ymin'], box['xmax'], box['ymax']
|
| 45 |
+
draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3)
|
| 46 |
+
|
| 47 |
+
label = detection['label']
|
| 48 |
+
score = detection['score']
|
| 49 |
+
text = f"{label} {score:.2f}"
|
| 50 |
+
text_size = draw.textbbox((xmin, ymin), text, font=font)
|
| 51 |
+
draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red")
|
| 52 |
+
draw.text((xmin, ymin), text, fill="white", font=font)
|
| 53 |
+
|
| 54 |
+
return draw_image
|
| 55 |
+
|
| 56 |
+
# Main function to process the image
|
| 57 |
+
def detect_object(image):
|
| 58 |
+
detections = object_detector(image)
|
| 59 |
+
processed_image = draw_bounding_boxes(image, detections)
|
| 60 |
+
description_text = read_objects(detections)
|
| 61 |
+
processed_audio = generate_audio(description_text)
|
| 62 |
+
return processed_image, processed_audio
|
| 63 |
+
|
| 64 |
+
# Gradio interface
|
| 65 |
+
description_text = """
|
| 66 |
+
# Multi-Object Detection with Audio Narration
|
| 67 |
+
|
| 68 |
+
Upload an image to detect objects and hear a natural language description.
|
| 69 |
+
|
| 70 |
+
### Credits:
|
| 71 |
+
Developed by Taizun S
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
demo = gr.Interface(
|
| 75 |
+
fn=detect_object,
|
| 76 |
+
inputs=gr.Image(label="Upload an Image", type="pil"),
|
| 77 |
+
outputs=[
|
| 78 |
+
gr.Image(label="Processed Image", type="pil"),
|
| 79 |
+
gr.Audio(label="Generated Audio")
|
| 80 |
+
],
|
| 81 |
+
title="Multi-Object Detection and Narration",
|
| 82 |
+
description=description_text,
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
demo.launch()
|