Spaces:
Runtime error
Runtime error
File size: 3,178 Bytes
9b8bd50 90009ee 9b8bd50 90009ee 9b8bd50 90009ee 9b8bd50 90009ee 9b8bd50 90009ee 9b8bd50 90009ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
"""https://zetcode.com/python/concurrent-http-requests/"""
import asyncio
import random
import time
import httpx
headers = {"Content-Type": "application/json; charset=utf-8"}
data_list_local = [
{"url": "http://127.0.0.1:7860/run/text2int", "data": ["one hundred forty five", "text2int"]},
{"url": "http://127.0.0.1:7860/run/text2int", "data": ["twenty thousand nine hundred fifty", "text2int_preprocessed"]},
{"url": "http://127.0.0.1:7860/run/text2int", "data": ["one hundred forty five", "text2int"]},
{"url": "http://127.0.0.1:7860/run/text2int", "data": ["nine hundred eighty three", "text2int_preprocessed"]},
{"url": "http://127.0.0.1:7860/run/text2int", "data": ["five million"]},
{"url": "http://127.0.0.1:7860/run/sentiment-analysis", "data": ["Totally agree"]},
{"url": "http://127.0.0.1:7860/run/sentiment-analysis", "data": ["I like it"]},
{"url": "http://127.0.0.1:7860/run/sentiment-analysis", "data": ["No more"]},
{"url": "http://127.0.0.1:7860/run/sentiment-analysis", "data": ["I am not sure"]},
{"url": "http://127.0.0.1:7860/run/sentiment-analysis", "data": ["Never"]},
]
data_remote = [
{"url": "https://tangibleai-mathtext.hf.space/run/text2int", "data": ["one hundred forty five", "text2int"]},
{"url": "https://tangibleai-mathtext.hf.space/run/text2int", "data": ["twenty thousand nine hundred fifty", "text2int_preprocessed"]},
{"url": "https://tangibleai-mathtext.hf.space/run/text2int", "data": ["one hundred forty five", "text2int"]},
{"url": "https://tangibleai-mathtext.hf.space/run/text2int", "data": ["nine hundred eighty three", "text2int_preprocessed"]},
{"url": "https://tangibleai-mathtext.hf.space/run/text2int", "data": ["five million"]},
{"url": "https://tangibleai-mathtext.hf.space/run/sentiment-analysis", "data": ["Totally agree"]},
{"url": "https://tangibleai-mathtext.hf.space/run/sentiment-analysis", "data": ["I like it"]},
{"url": "https://tangibleai-mathtext.hf.space/run/sentiment-analysis", "data": ["No more"]},
{"url": "https://tangibleai-mathtext.hf.space/run/sentiment-analysis", "data": ["I am not sure"]},
{"url": "https://tangibleai-mathtext.hf.space/run/sentiment-analysis", "data": ["Never"]},
]
# async call to endpoint
async def call_api(url, data, number):
json = {"data": data}
async with httpx.AsyncClient() as client:
start = time.perf_counter() # Used perf_counter for more precise result.
response = await client.post(url=url, headers=headers, json=json, timeout=30)
end = time.perf_counter()
# print(response.status_code)
return f"Call_{number}\n" \
f"start: {start:.4f} end: {end:.4f} delay: {(end - start):.4f}\n" \
f"input_text: {data}\n" \
f"result: {response.json().get('data')}"
async def main(n):
calls = []
for num in range(n):
item = random.choice(data_remote)
url, data = item["url"], item["data"]
# calls.append(call_api(remote_url, data_list, num))
calls.append(call_api(url, data, num))
r = await asyncio.gather(*calls)
print(*r, sep="\n")
asyncio.run(main(30))
|