Spaces:
Runtime error
Runtime error
Update test_api
Browse files- .gitignore +1 -0
- app.py +122 -73
- plot_calls.py +9 -0
- requirements.txt +1 -0
- test_api.py +75 -43
.gitignore
CHANGED
|
@@ -98,3 +98,4 @@ docs/**/*.html
|
|
| 98 |
.bash_env
|
| 99 |
**/*secret*
|
| 100 |
**/*private*
|
|
|
|
|
|
| 98 |
.bash_env
|
| 99 |
**/*secret*
|
| 100 |
**/*private*
|
| 101 |
+
/call_history.csv
|
app.py
CHANGED
|
@@ -138,17 +138,6 @@ def get_types(cls_set: List[Type], component: str):
|
|
| 138 |
|
| 139 |
routes.get_types = get_types
|
| 140 |
|
| 141 |
-
functions = {
|
| 142 |
-
"text2int": text2int,
|
| 143 |
-
"text2int_preprocessed": try_text2int_preprocessed,
|
| 144 |
-
}
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
def text2int_selector(text, func):
|
| 148 |
-
f = functions[func]
|
| 149 |
-
return f(text)
|
| 150 |
-
|
| 151 |
-
|
| 152 |
sentiment = pipeline(task="sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
| 153 |
|
| 154 |
|
|
@@ -157,73 +146,133 @@ def get_sentiment(text):
|
|
| 157 |
|
| 158 |
|
| 159 |
with gr.Blocks() as html_block:
|
| 160 |
-
gr.Markdown("#
|
| 161 |
-
|
| 162 |
-
inputs_text2int = [
|
| 163 |
-
gr.Text(placeholder="Type a number as text or a sentence", label="Text to process",
|
| 164 |
-
value="forty two"),
|
| 165 |
-
gr.Radio(["text2int", "text2int_preprocessed"], label="Function Selection", value="text2int")
|
| 166 |
-
]
|
| 167 |
-
|
| 168 |
-
outputs_text2int = gr.Textbox(label="Output integer")
|
| 169 |
-
|
| 170 |
-
button_text2int = gr.Button("text2int")
|
| 171 |
-
|
| 172 |
-
button_text2int.click(
|
| 173 |
-
fn=text2int_selector,
|
| 174 |
-
inputs=inputs_text2int,
|
| 175 |
-
outputs=outputs_text2int,
|
| 176 |
-
api_name="text2int",
|
| 177 |
-
)
|
| 178 |
-
|
| 179 |
-
examples_text2int = [
|
| 180 |
-
["one thousand forty seven", "text2int"],
|
| 181 |
-
["one hundred", "text2int_preprocessed"],
|
| 182 |
-
]
|
| 183 |
-
|
| 184 |
-
gr.Examples(examples=examples_text2int, inputs=inputs_text2int)
|
| 185 |
-
|
| 186 |
-
inputs_sentiment = [
|
| 187 |
-
gr.Text(placeholder="Type a number as text or a sentence", label="Text to process",
|
| 188 |
-
value="I really like it!"),
|
| 189 |
-
]
|
| 190 |
-
|
| 191 |
-
outputs_sentiment = gr.Textbox(label="Sentiment result")
|
| 192 |
-
|
| 193 |
-
button_sentiment = gr.Button("sentiment analysis")
|
| 194 |
-
|
| 195 |
-
button_sentiment.click(
|
| 196 |
-
get_sentiment,
|
| 197 |
-
inputs=inputs_sentiment,
|
| 198 |
-
outputs=outputs_sentiment,
|
| 199 |
-
api_name="sentiment-analysis"
|
| 200 |
-
)
|
| 201 |
-
|
| 202 |
-
examples_sentiment = [
|
| 203 |
-
["Couldn't agree more!"],
|
| 204 |
-
["Sorry, I can not accept this!"],
|
| 205 |
-
]
|
| 206 |
-
|
| 207 |
-
gr.Examples(examples=examples_sentiment, inputs=inputs_sentiment)
|
| 208 |
-
|
| 209 |
-
gr.Markdown(r"""
|
| 210 |
|
| 211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
|
| 213 |
-
|
| 214 |
-
import requests
|
| 215 |
|
| 216 |
-
|
| 217 |
-
url="https://tangibleai-mathtext.hf.space/run/text2int", json={"data": ["one hundred forty five", "text2int"]}
|
| 218 |
-
).json()
|
| 219 |
-
```
|
| 220 |
|
| 221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
# interface = gr.Interface(lambda x: x, inputs=["text"], outputs=["text"])
|
| 229 |
# html_block.input_components = interface.input_components
|
|
|
|
| 138 |
|
| 139 |
routes.get_types = get_types
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
sentiment = pipeline(task="sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
| 142 |
|
| 143 |
|
|
|
|
| 146 |
|
| 147 |
|
| 148 |
with gr.Blocks() as html_block:
|
| 149 |
+
gr.Markdown("# Rori - Mathbot")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
+
with gr.Tab("Text to integer"):
|
| 152 |
+
inputs_text2int = [
|
| 153 |
+
gr.Text(placeholder="Type a number as text or a sentence", label="Text to process",
|
| 154 |
+
value="forty two"),
|
| 155 |
+
]
|
| 156 |
|
| 157 |
+
outputs_text2int = gr.Textbox(label="Output integer")
|
|
|
|
| 158 |
|
| 159 |
+
button_text2int = gr.Button("text2int")
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
+
button_text2int.click(
|
| 162 |
+
fn=try_text2int,
|
| 163 |
+
inputs=inputs_text2int,
|
| 164 |
+
outputs=outputs_text2int,
|
| 165 |
+
api_name="text2int",
|
| 166 |
+
)
|
| 167 |
|
| 168 |
+
examples_text2int = [
|
| 169 |
+
"one thousand forty seven",
|
| 170 |
+
"one hundred",
|
| 171 |
+
]
|
| 172 |
+
|
| 173 |
+
gr.Examples(examples=examples_text2int, inputs=inputs_text2int)
|
| 174 |
+
|
| 175 |
+
gr.Markdown(r"""
|
| 176 |
+
|
| 177 |
+
## API
|
| 178 |
+
```python
|
| 179 |
+
import requests
|
| 180 |
+
|
| 181 |
+
requests.post(
|
| 182 |
+
url="https://tangibleai-mathtext.hf.space/run/text2int", json={"data": ["one hundred forty five"]}
|
| 183 |
+
).json()
|
| 184 |
+
```
|
| 185 |
+
|
| 186 |
+
Or using `curl`:
|
| 187 |
+
|
| 188 |
+
```bash
|
| 189 |
+
curl -X POST https://tangibleai-mathtext.hf.space/run/text2int -H 'Content-Type: application/json' -d '{"data": ["one hundred forty five"]}'
|
| 190 |
+
```
|
| 191 |
+
{bq_json}""" + f"{json.loads(BQ_JSON)['type']}")
|
| 192 |
+
|
| 193 |
+
with gr.Tab("Text to integer preprocessed"):
|
| 194 |
+
inputs_text2int_preprocessed = [
|
| 195 |
+
gr.Text(placeholder="Type a number as text or a sentence", label="Text to process",
|
| 196 |
+
value="forty two"),
|
| 197 |
+
]
|
| 198 |
+
|
| 199 |
+
outputs_text2int_preprocessed = gr.Textbox(label="Output integer")
|
| 200 |
+
|
| 201 |
+
button_text2int = gr.Button("text2int preprocessed")
|
| 202 |
+
|
| 203 |
+
button_text2int.click(
|
| 204 |
+
fn=try_text2int_preprocessed,
|
| 205 |
+
inputs=inputs_text2int_preprocessed,
|
| 206 |
+
outputs=outputs_text2int_preprocessed,
|
| 207 |
+
api_name="text2int_preprocessed",
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
examples_text2int_preprocessed = [
|
| 211 |
+
"one thousand forty seven",
|
| 212 |
+
"one hundred",
|
| 213 |
+
]
|
| 214 |
+
|
| 215 |
+
gr.Examples(examples=examples_text2int_preprocessed, inputs=inputs_text2int_preprocessed)
|
| 216 |
+
|
| 217 |
+
gr.Markdown(r"""
|
| 218 |
+
|
| 219 |
+
## API
|
| 220 |
+
```python
|
| 221 |
+
import requests
|
| 222 |
+
|
| 223 |
+
requests.post(
|
| 224 |
+
url="https://tangibleai-mathtext.hf.space/run/text2int_preprocessed", json={"data": ["one hundred forty five"]}
|
| 225 |
+
).json()
|
| 226 |
+
```
|
| 227 |
+
|
| 228 |
+
Or using `curl`:
|
| 229 |
+
|
| 230 |
+
```bash
|
| 231 |
+
curl -X POST https://tangibleai-mathtext.hf.space/run/text2int_preprocessed -H 'Content-Type: application/json' -d '{"data": ["one hundred forty five"]}'
|
| 232 |
+
```
|
| 233 |
+
{bq_json}""" + f"{json.loads(BQ_JSON)['type']}")
|
| 234 |
+
|
| 235 |
+
with gr.Tab("Sentiment Analysis"):
|
| 236 |
+
inputs_sentiment = [
|
| 237 |
+
gr.Text(placeholder="Type a number as text or a sentence", label="Text to process",
|
| 238 |
+
value="I really like it!"),
|
| 239 |
+
]
|
| 240 |
+
|
| 241 |
+
outputs_sentiment = gr.Textbox(label="Sentiment result")
|
| 242 |
+
|
| 243 |
+
button_sentiment = gr.Button("sentiment analysis")
|
| 244 |
+
|
| 245 |
+
button_sentiment.click(
|
| 246 |
+
get_sentiment,
|
| 247 |
+
inputs=inputs_sentiment,
|
| 248 |
+
outputs=outputs_sentiment,
|
| 249 |
+
api_name="sentiment-analysis"
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
examples_sentiment = [
|
| 253 |
+
["Totally agree!"],
|
| 254 |
+
["Sorry, I can not accept this!"],
|
| 255 |
+
]
|
| 256 |
+
|
| 257 |
+
gr.Examples(examples=examples_sentiment, inputs=inputs_sentiment)
|
| 258 |
+
|
| 259 |
+
gr.Markdown(r"""
|
| 260 |
+
|
| 261 |
+
## API
|
| 262 |
+
```python
|
| 263 |
+
import requests
|
| 264 |
+
|
| 265 |
+
requests.post(
|
| 266 |
+
url="https://tangibleai-mathtext.hf.space/run/sentiment-analysis", json={"data": ["You are right!"]}
|
| 267 |
+
).json()
|
| 268 |
+
```
|
| 269 |
+
|
| 270 |
+
Or using `curl`:
|
| 271 |
+
|
| 272 |
+
```bash
|
| 273 |
+
curl -X POST https://tangibleai-mathtext.hf.space/run/sentiment-analysis -H 'Content-Type: application/json' -d '{"data": ["You are right!"]}'
|
| 274 |
+
```
|
| 275 |
+
{bq_json}""" + f"{json.loads(BQ_JSON)['type']}")
|
| 276 |
|
| 277 |
# interface = gr.Interface(lambda x: x, inputs=["text"], outputs=["text"])
|
| 278 |
# html_block.input_components = interface.input_components
|
plot_calls.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import matplotlib.pyplot as plt
|
| 2 |
+
import pandas as pd
|
| 3 |
+
|
| 4 |
+
df = pd.read_csv('call_history.csv') # data loading
|
| 5 |
+
print(df)
|
| 6 |
+
|
| 7 |
+
df.plot(by='endpoint', column='delay', kind='box', showmeans=True)
|
| 8 |
+
|
| 9 |
+
plt.show()
|
requirements.txt
CHANGED
|
@@ -5,3 +5,4 @@ gradio==3.14.0
|
|
| 5 |
python-dotenv
|
| 6 |
transformers
|
| 7 |
torch
|
|
|
|
|
|
| 5 |
python-dotenv
|
| 6 |
transformers
|
| 7 |
torch
|
| 8 |
+
httpx
|
test_api.py
CHANGED
|
@@ -3,61 +3,93 @@
|
|
| 3 |
import asyncio
|
| 4 |
import random
|
| 5 |
import time
|
| 6 |
-
|
| 7 |
import httpx
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
headers = {"Content-Type": "application/json; charset=utf-8"}
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
]
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
|
| 38 |
# async call to endpoint
|
| 39 |
-
async def call_api(url, data,
|
| 40 |
-
json = {"data": data}
|
| 41 |
async with httpx.AsyncClient() as client:
|
| 42 |
start = time.perf_counter() # Used perf_counter for more precise result.
|
| 43 |
response = await client.post(url=url, headers=headers, json=json, timeout=30)
|
| 44 |
end = time.perf_counter()
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
|
| 52 |
-
async def main(n):
|
| 53 |
-
calls = []
|
| 54 |
-
for num in range(n):
|
| 55 |
-
item = random.choice(data_remote)
|
| 56 |
-
url, data = item["url"], item["data"]
|
| 57 |
-
# calls.append(call_api(remote_url, data_list, num))
|
| 58 |
-
calls.append(call_api(url, data, num))
|
| 59 |
-
r = await asyncio.gather(*calls)
|
| 60 |
-
print(*r, sep="\n")
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import asyncio
|
| 4 |
import random
|
| 5 |
import time
|
| 6 |
+
import pandas as pd
|
| 7 |
import httpx
|
| 8 |
+
from os.path import exists
|
| 9 |
+
|
| 10 |
+
NUMBER_OF_CALLS = 10
|
| 11 |
|
| 12 |
headers = {"Content-Type": "application/json; charset=utf-8"}
|
| 13 |
|
| 14 |
+
base_url = "https://tangibleai-mathtext.hf.space/run/{endpoint}"
|
| 15 |
+
# base_url = "http://localhost:7860/run/{endpoint}"
|
| 16 |
+
|
| 17 |
+
data_list_1 = {
|
| 18 |
+
"endpoint": "text2int",
|
| 19 |
+
"test_data": [
|
| 20 |
+
"one hundred forty five",
|
| 21 |
+
"twenty thousand nine hundred fifty",
|
| 22 |
+
"one hundred forty five",
|
| 23 |
+
"nine hundred eighty three",
|
| 24 |
+
"five million",
|
| 25 |
+
]
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
data_list_2 = {
|
| 29 |
+
"endpoint": "text2int_preprocessed",
|
| 30 |
+
"test_data": [
|
| 31 |
+
"one hundred forty five",
|
| 32 |
+
"twenty thousand nine hundred fifty",
|
| 33 |
+
"one hundred forty five",
|
| 34 |
+
"nine hundred eighty three",
|
| 35 |
+
"five million",
|
| 36 |
+
]
|
| 37 |
+
}
|
| 38 |
+
data_list_3 = {
|
| 39 |
+
"endpoint": "sentiment-analysis",
|
| 40 |
+
"test_data": [
|
| 41 |
+
"Totally agree",
|
| 42 |
+
"I like it",
|
| 43 |
+
"No more",
|
| 44 |
+
"I am not sure",
|
| 45 |
+
"Never",
|
| 46 |
+
]
|
| 47 |
+
}
|
| 48 |
|
| 49 |
|
| 50 |
# async call to endpoint
|
| 51 |
+
async def call_api(url, data, call_number, number_of_calls):
|
| 52 |
+
json = {"data": [data]}
|
| 53 |
async with httpx.AsyncClient() as client:
|
| 54 |
start = time.perf_counter() # Used perf_counter for more precise result.
|
| 55 |
response = await client.post(url=url, headers=headers, json=json, timeout=30)
|
| 56 |
end = time.perf_counter()
|
| 57 |
+
return {
|
| 58 |
+
"endpoint": url.split("/")[-1],
|
| 59 |
+
"test data": data,
|
| 60 |
+
"response": response.json().get("data"),
|
| 61 |
+
"call number": call_number,
|
| 62 |
+
"number of calls": number_of_calls,
|
| 63 |
+
"start": start.__round__(4),
|
| 64 |
+
"end": end.__round__(4),
|
| 65 |
+
"delay": (end - start).__round__(4)
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
data_lists = [data_list_1, data_list_2, data_list_3]
|
| 70 |
+
|
| 71 |
+
results = []
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
async def main(number_of_calls):
|
| 75 |
+
for data_list in data_lists:
|
| 76 |
+
calls = []
|
| 77 |
+
for call_number in range(1, number_of_calls + 1):
|
| 78 |
+
url = base_url.format(endpoint=data_list["endpoint"])
|
| 79 |
+
data = random.choice(data_list["test_data"])
|
| 80 |
+
calls.append(call_api(url, data, call_number, number_of_calls))
|
| 81 |
+
r = await asyncio.gather(*calls)
|
| 82 |
+
results.extend(r)
|
| 83 |
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
+
start = time.perf_counter()
|
| 87 |
+
asyncio.run(main(NUMBER_OF_CALLS))
|
| 88 |
+
end = time.perf_counter()
|
| 89 |
+
print(end-start)
|
| 90 |
+
df = pd.DataFrame(results)
|
| 91 |
|
| 92 |
+
if exists("call_history.csv"):
|
| 93 |
+
df.to_csv(path_or_buf="call_history.csv", mode="a", header=False, index=False)
|
| 94 |
+
else:
|
| 95 |
+
df.to_csv(path_or_buf="call_history.csv", mode="w", header=True, index=False)
|