Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from transformers import (
|
5 |
+
AutoModel, AutoProcessor, AutoFeatureExtractor,
|
6 |
+
AutoTokenizer, pipeline
|
7 |
+
)
|
8 |
+
import warnings
|
9 |
+
warnings.filterwarnings("ignore")
|
10 |
+
|
11 |
+
def test_single_model(model_name):
|
12 |
+
"""Test compatibility of a single model"""
|
13 |
+
|
14 |
+
if not model_name.strip():
|
15 |
+
return "Please enter a model name"
|
16 |
+
|
17 |
+
result_text = f"π Testing Model: {model_name}\n"
|
18 |
+
result_text += "=" * 60 + "\n\n"
|
19 |
+
|
20 |
+
try:
|
21 |
+
# 1. Load model
|
22 |
+
result_text += "1οΈβ£ Loading Model...\n"
|
23 |
+
model = AutoModel.from_pretrained(model_name)
|
24 |
+
result_text += " β
Model loaded successfully\n"
|
25 |
+
result_text += f" π Model type: {model.config.model_type}\n"
|
26 |
+
result_text += f" ποΈ Model class: {model.__class__.__name__}\n\n"
|
27 |
+
|
28 |
+
# 2. Check model architecture
|
29 |
+
result_text += "2οΈβ£ Checking Model Architecture...\n"
|
30 |
+
if hasattr(model.config, 'hidden_size'):
|
31 |
+
result_text += f" π’ Hidden size: {model.config.hidden_size}\n"
|
32 |
+
if hasattr(model.config, 'num_hidden_layers'):
|
33 |
+
result_text += f" π Number of layers: {model.config.num_hidden_layers}\n"
|
34 |
+
if hasattr(model.config, 'vocab_size'):
|
35 |
+
result_text += f" π Vocabulary size: {model.config.vocab_size}\n"
|
36 |
+
result_text += "\n"
|
37 |
+
|
38 |
+
# 3. Try to load processor
|
39 |
+
result_text += "3οΈβ£ Loading Processor...\n"
|
40 |
+
processor = None
|
41 |
+
supports_audio = False
|
42 |
+
|
43 |
+
try:
|
44 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
45 |
+
result_text += f" β
Processor loaded successfully: {processor.__class__.__name__}\n"
|
46 |
+
supports_audio = True
|
47 |
+
except:
|
48 |
+
try:
|
49 |
+
processor = AutoFeatureExtractor.from_pretrained(model_name)
|
50 |
+
result_text += f" β
Feature extractor loaded successfully: {processor.__class__.__name__}\n"
|
51 |
+
supports_audio = True
|
52 |
+
except:
|
53 |
+
result_text += " β Cannot load audio processor\n"
|
54 |
+
supports_audio = False
|
55 |
+
result_text += "\n"
|
56 |
+
|
57 |
+
# 4. Check input requirements
|
58 |
+
result_text += "4οΈβ£ Checking Input Requirements...\n"
|
59 |
+
sampling_rate = 16000 # Default value
|
60 |
+
if processor and supports_audio:
|
61 |
+
if hasattr(processor, 'sampling_rate'):
|
62 |
+
sampling_rate = processor.sampling_rate
|
63 |
+
result_text += f" π΅ Sampling rate: {sampling_rate} Hz\n"
|
64 |
+
if hasattr(processor, 'feature_size'):
|
65 |
+
result_text += f" π Feature dimension: {processor.feature_size}\n"
|
66 |
+
if hasattr(processor, 'return_attention_mask'):
|
67 |
+
result_text += f" π Supports attention mask: {processor.return_attention_mask}\n"
|
68 |
+
result_text += "\n"
|
69 |
+
|
70 |
+
# 5. Test inference
|
71 |
+
result_text += "5οΈβ£ Testing Inference...\n"
|
72 |
+
if supports_audio:
|
73 |
+
try:
|
74 |
+
# Create dummy audio data (2 seconds)
|
75 |
+
dummy_audio = np.random.randn(sampling_rate * 2).astype(np.float32)
|
76 |
+
|
77 |
+
# Process audio
|
78 |
+
inputs = processor(dummy_audio, sampling_rate=sampling_rate, return_tensors="pt")
|
79 |
+
|
80 |
+
# Model inference
|
81 |
+
with torch.no_grad():
|
82 |
+
outputs = model(**inputs)
|
83 |
+
|
84 |
+
# Check output
|
85 |
+
if hasattr(outputs, 'last_hidden_state'):
|
86 |
+
shape = outputs.last_hidden_state.shape
|
87 |
+
result_text += f" β
Inference successful! Hidden state shape: {shape}\n"
|
88 |
+
elif hasattr(outputs, 'logits'):
|
89 |
+
shape = outputs.logits.shape
|
90 |
+
result_text += f" β
Inference successful! Logits shape: {shape}\n"
|
91 |
+
else:
|
92 |
+
result_text += f" β
Inference successful! Output type: {type(outputs)}\n"
|
93 |
+
|
94 |
+
except Exception as e:
|
95 |
+
result_text += f" β Inference failed: {str(e)}\n"
|
96 |
+
else:
|
97 |
+
result_text += " β οΈ Audio input not supported, skipping inference test\n"
|
98 |
+
result_text += "\n"
|
99 |
+
|
100 |
+
# 6. Multilingual support check
|
101 |
+
result_text += "6οΈβ£ Multilingual Support Check...\n"
|
102 |
+
multilingual = False
|
103 |
+
|
104 |
+
if hasattr(model.config, 'vocab_size') and model.config.vocab_size > 50000:
|
105 |
+
result_text += f" β
Likely supports multiple languages (large vocabulary: {model.config.vocab_size})\n"
|
106 |
+
multilingual = True
|
107 |
+
elif any(keyword in model_name.lower() for keyword in ['xlsr', 'multilingual', 'cross-lingual']):
|
108 |
+
result_text += " β
Supports multiple languages based on model name\n"
|
109 |
+
multilingual = True
|
110 |
+
else:
|
111 |
+
result_text += " β Multilingual support unclear\n"
|
112 |
+
result_text += "\n"
|
113 |
+
|
114 |
+
# 7. Depression detection suitability scoring
|
115 |
+
result_text += "7οΈβ£ Depression Detection Suitability Assessment...\n"
|
116 |
+
score = 0
|
117 |
+
max_score = 15
|
118 |
+
|
119 |
+
# Most important: Specifically for depression/mental health detection (6 points)
|
120 |
+
depression_keywords = ['depression', 'mental-health', 'psychological', 'mood', 'phq']
|
121 |
+
if any(keyword in model_name.lower() for keyword in depression_keywords):
|
122 |
+
score += 6
|
123 |
+
result_text += " π― Specifically for depression/mental health detection (+6 points)\n"
|
124 |
+
|
125 |
+
# Secondary: For emotion recognition (3 points)
|
126 |
+
emotion_keywords = ['emotion', 'sentiment', 'affective', 'feeling']
|
127 |
+
elif any(keyword in model_name.lower() for keyword in emotion_keywords):
|
128 |
+
score += 3
|
129 |
+
result_text += " π For emotion recognition, potentially applicable (+3 points)\n"
|
130 |
+
|
131 |
+
# Basic requirement: Audio input support (2 points)
|
132 |
+
if supports_audio:
|
133 |
+
score += 2
|
134 |
+
result_text += " π΅ Supports audio input (+2 points)\n"
|
135 |
+
else:
|
136 |
+
result_text += " β Does not support audio input (0 points)\n"
|
137 |
+
|
138 |
+
# Multilingual support (2 points)
|
139 |
+
if multilingual:
|
140 |
+
score += 2
|
141 |
+
result_text += " π Supports multiple languages (+2 points)\n"
|
142 |
+
|
143 |
+
# Architecture suitability (2 points)
|
144 |
+
if model.config.model_type in ['wav2vec2', 'hubert', 'wavlm']:
|
145 |
+
score += 2
|
146 |
+
result_text += " ποΈ Excellent speech representation learning architecture (+2 points)\n"
|
147 |
+
elif model.config.model_type == 'whisper':
|
148 |
+
score += 1
|
149 |
+
result_text += " β οΈ Whisper architecture needs modification for classification (+1 point)\n"
|
150 |
+
|
151 |
+
# Check if configured for classification
|
152 |
+
if hasattr(model.config, 'num_labels'):
|
153 |
+
if model.config.num_labels == 2:
|
154 |
+
score += 1
|
155 |
+
result_text += f" β
Binary classification task configuration (likely depression detection) (+1 point)\n"
|
156 |
+
else:
|
157 |
+
score += 0.5
|
158 |
+
result_text += f" β οΈ Multi-class task ({model.config.num_labels} classes) (+0.5 points)\n"
|
159 |
+
|
160 |
+
# Check for training dataset clues
|
161 |
+
daic_keywords = ['daic', 'wizard-of-oz', 'depression-detection', 'clinical']
|
162 |
+
if any(keyword in model_name.lower() for keyword in daic_keywords):
|
163 |
+
score += 2
|
164 |
+
result_text += " π Possibly trained on clinical depression datasets (+2 points)\n"
|
165 |
+
|
166 |
+
result_text += f"\nπ― Depression Detection Suitability Score: {score}/{max_score}\n"
|
167 |
+
|
168 |
+
# 8. Recommendations
|
169 |
+
result_text += "\n8οΈβ£ Usage Recommendations...\n"
|
170 |
+
if score >= 12:
|
171 |
+
result_text += " π Highly recommended! Specifically for depression detection, very suitable\n"
|
172 |
+
elif score >= 8:
|
173 |
+
result_text += " π Recommended, may need some fine-tuning\n"
|
174 |
+
elif score >= 5:
|
175 |
+
result_text += " β οΈ Use with caution, may need significant modification\n"
|
176 |
+
else:
|
177 |
+
result_text += " β Not recommended, suggest finding specialized depression detection models\n"
|
178 |
+
|
179 |
+
# 9. Further inspection suggestions
|
180 |
+
result_text += "\n9οΈβ£ Further Inspection Suggestions...\n"
|
181 |
+
result_text += " π Check model card for training data description\n"
|
182 |
+
result_text += " π Check if DAIC-WOZ or other depression datasets are mentioned\n"
|
183 |
+
result_text += " π Check papers or documentation for task description\n"
|
184 |
+
result_text += " π§ͺ Test with small samples to see if model output matches depression detection expectations\n"
|
185 |
+
|
186 |
+
return result_text
|
187 |
+
|
188 |
+
except Exception as e:
|
189 |
+
error_msg = f"β Model test failed: {str(e)}\n"
|
190 |
+
error_msg += "\nPossible causes:\n"
|
191 |
+
error_msg += "β’ Incorrect model name\n"
|
192 |
+
error_msg += "β’ Model requires special permissions\n"
|
193 |
+
error_msg += "β’ Network connection issues\n"
|
194 |
+
error_msg += "β’ Model architecture incompatibility\n"
|
195 |
+
return error_msg
|
196 |
+
|
197 |
+
def test_recommended_models():
|
198 |
+
"""Test recommended model list"""
|
199 |
+
|
200 |
+
recommended_models = [
|
201 |
+
"facebook/wav2vec2-large-xlsr-53",
|
202 |
+
"microsoft/wavlm-large",
|
203 |
+
"harshit345/xlsr-wav2vec-speech-emotion-recognition",
|
204 |
+
"audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim",
|
205 |
+
"speechbrain/emotion-recognition-wav2vec2-IEMOCAP"
|
206 |
+
]
|
207 |
+
|
208 |
+
result_text = "π Batch Testing Recommended Models\n"
|
209 |
+
result_text += "=" * 60 + "\n\n"
|
210 |
+
|
211 |
+
results = []
|
212 |
+
|
213 |
+
for i, model_name in enumerate(recommended_models, 1):
|
214 |
+
result_text += f"π Testing {i}/{len(recommended_models)}: {model_name}\n"
|
215 |
+
result_text += "-" * 50 + "\n"
|
216 |
+
|
217 |
+
try:
|
218 |
+
# Simplified quick test
|
219 |
+
model = AutoModel.from_pretrained(model_name)
|
220 |
+
|
221 |
+
# Check audio support
|
222 |
+
supports_audio = False
|
223 |
+
try:
|
224 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
225 |
+
supports_audio = True
|
226 |
+
except:
|
227 |
+
try:
|
228 |
+
processor = AutoFeatureExtractor.from_pretrained(model_name)
|
229 |
+
supports_audio = True
|
230 |
+
except:
|
231 |
+
pass
|
232 |
+
|
233 |
+
# Check multilingual
|
234 |
+
multilingual = False
|
235 |
+
if hasattr(model.config, 'vocab_size') and model.config.vocab_size > 50000:
|
236 |
+
multilingual = True
|
237 |
+
elif any(keyword in model_name.lower() for keyword in ['xlsr', 'multilingual']):
|
238 |
+
multilingual = True
|
239 |
+
|
240 |
+
# Calculate simplified score
|
241 |
+
score = 0
|
242 |
+
if supports_audio:
|
243 |
+
score += 3
|
244 |
+
if multilingual:
|
245 |
+
score += 2
|
246 |
+
if model.config.model_type in ['wav2vec2', 'hubert', 'wavlm']:
|
247 |
+
score += 3
|
248 |
+
|
249 |
+
results.append({
|
250 |
+
'name': model_name,
|
251 |
+
'score': score,
|
252 |
+
'audio': supports_audio,
|
253 |
+
'multilingual': multilingual,
|
254 |
+
'type': model.config.model_type
|
255 |
+
})
|
256 |
+
|
257 |
+
result_text += f"β
Loaded successfully | Audio: {'β
' if supports_audio else 'β'} | Multilingual: {'β
' if multilingual else 'β'} | Score: {score}/8\n\n"
|
258 |
+
|
259 |
+
except Exception as e:
|
260 |
+
result_text += f"β Loading failed: {str(e)}\n\n"
|
261 |
+
|
262 |
+
# Sort and recommend
|
263 |
+
results.sort(key=lambda x: x['score'], reverse=True)
|
264 |
+
|
265 |
+
result_text += "π Recommendation Rankings:\n"
|
266 |
+
result_text += "=" * 40 + "\n"
|
267 |
+
|
268 |
+
for i, model in enumerate(results, 1):
|
269 |
+
result_text += f"{i}. {model['name']}\n"
|
270 |
+
result_text += f" Score: {model['score']}/8 | Type: {model['type']}\n\n"
|
271 |
+
|
272 |
+
return result_text
|
273 |
+
|
274 |
+
# Create Gradio interface
|
275 |
+
with gr.Blocks(title="π€ Depression Detection Model Compatibility Test") as app:
|
276 |
+
gr.Markdown("""
|
277 |
+
# π€ Depression Detection Model Compatibility Test Tool
|
278 |
+
|
279 |
+
This tool helps you quickly test whether Hugging Face models are suitable for depression detection tasks.
|
280 |
+
|
281 |
+
## Features:
|
282 |
+
- β
Check model loading compatibility
|
283 |
+
- π΅ Verify audio input support
|
284 |
+
- π Assess multilingual capabilities
|
285 |
+
- π Suitability scoring (0-15 points)
|
286 |
+
- π‘ Usage recommendations
|
287 |
+
""")
|
288 |
+
|
289 |
+
with gr.Tab("Single Model Test"):
|
290 |
+
with gr.Row():
|
291 |
+
model_input = gr.Textbox(
|
292 |
+
placeholder="Enter model name, e.g.: facebook/wav2vec2-large-xlsr-53",
|
293 |
+
label="π Model Name",
|
294 |
+
value="ireneminhee/speech-to-depression"
|
295 |
+
)
|
296 |
+
test_btn = gr.Button("π Start Test", variant="primary")
|
297 |
+
|
298 |
+
result_output = gr.Textbox(
|
299 |
+
label="π Test Results",
|
300 |
+
lines=25,
|
301 |
+
max_lines=50
|
302 |
+
)
|
303 |
+
|
304 |
+
test_btn.click(
|
305 |
+
fn=test_single_model,
|
306 |
+
inputs=[model_input],
|
307 |
+
outputs=[result_output]
|
308 |
+
)
|
309 |
+
|
310 |
+
with gr.Tab("Recommended Models Batch Test"):
|
311 |
+
gr.Markdown("""
|
312 |
+
### π Recommended Depression Detection Candidate Models
|
313 |
+
|
314 |
+
These models perform well in speech emotion recognition and multilingual support:
|
315 |
+
- `facebook/wav2vec2-large-xlsr-53` - Multilingual speech representation learning
|
316 |
+
- `microsoft/wavlm-large` - Speech understanding specialized model
|
317 |
+
- `harshit345/xlsr-wav2vec-speech-emotion-recognition` - Emotion recognition
|
318 |
+
- `audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim` - Emotion dimension recognition
|
319 |
+
- `speechbrain/emotion-recognition-wav2vec2-IEMOCAP` - Emotion classification
|
320 |
+
""")
|
321 |
+
|
322 |
+
batch_test_btn = gr.Button("π Batch Test Recommended Models", variant="primary")
|
323 |
+
batch_result_output = gr.Textbox(
|
324 |
+
label="π Batch Test Results",
|
325 |
+
lines=20,
|
326 |
+
max_lines=50
|
327 |
+
)
|
328 |
+
|
329 |
+
batch_test_btn.click(
|
330 |
+
fn=test_recommended_models,
|
331 |
+
inputs=[],
|
332 |
+
outputs=[batch_result_output]
|
333 |
+
)
|
334 |
+
|
335 |
+
with gr.Tab("Usage Instructions"):
|
336 |
+
gr.Markdown("""
|
337 |
+
## π Usage Instructions
|
338 |
+
|
339 |
+
### Scoring Criteria (Redesigned):
|
340 |
+
- **Depression-specific model** (+6 points): Specifically for depression/mental health detection
|
341 |
+
- **Emotion recognition model** (+3 points): For emotion recognition, potentially applicable
|
342 |
+
- **Audio support** (+2 points): Whether the model can process audio input
|
343 |
+
- **Multilingual support** (+2 points): Support for Chinese, English, German, Russian
|
344 |
+
- **Architecture suitability** (+2 points): Whether model architecture is suitable for speech classification
|
345 |
+
- **Classification configuration** (+1 point): Whether configured for classification tasks
|
346 |
+
- **Clinical datasets** (+2 points): Whether trained on clinical depression datasets
|
347 |
+
|
348 |
+
### Score Interpretation:
|
349 |
+
- **12-15 points**: π Highly recommended, specialized depression detection model
|
350 |
+
- **8-11 points**: π Recommended, may need fine-tuning
|
351 |
+
- **5-7 points**: β οΈ Use with caution, needs modification
|
352 |
+
- **0-4 points**: β Not recommended
|
353 |
+
|
354 |
+
### Next Steps:
|
355 |
+
1. Select the top 2-3 models with highest scores
|
356 |
+
2. Conduct in-depth testing in Google Colab
|
357 |
+
3. Fine-tune using DAIC-WOZ dataset
|
358 |
+
4. Final evaluation with your multilingual data
|
359 |
+
""")
|
360 |
+
|
361 |
+
# Launch application
|
362 |
+
if __name__ == "__main__":
|
363 |
+
app.launch()
|