Tashinjira commited on
Commit
36d2e30
·
verified ·
1 Parent(s): d9ab5a8

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -29
app.py DELETED
@@ -1,29 +0,0 @@
1
- import gradio as gr
2
- import numpy as np
3
- import torch
4
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
5
-
6
- id2label = {0: 'anger', 1: 'anticipation', 2: 'disgust', 3: 'fear', 4: 'joy', 5: 'love', 6: 'optimism', 7: 'pessimism', 8: 'sadness', 9: 'surprise', 10: 'trust'}
7
- tokenizer = AutoTokenizer.from_pretrained("winain7788/bert-finetuned-sem_eval-english")
8
- model = AutoModelForSequenceClassification.from_pretrained("winain7788/bert-finetuned-sem_eval-english")
9
-
10
- async def get_sentiment(text):
11
- encoding = tokenizer(text, return_tensors="pt")
12
- encoding = {k: v.to(model.device) for k,v in encoding.items()}
13
-
14
- outputs = model(**encoding)
15
- logits = outputs.logits
16
- logits.shape
17
- # apply sigmoid + threshold
18
- sigmoid = torch.nn.Sigmoid()
19
- probs = sigmoid(logits.squeeze().cpu())
20
- predictions = np.zeros(probs.shape)
21
- predictions[np.where(probs >= 0.5)] = 1
22
-
23
- # turn predicted id's into actual label names
24
- predicted_labels = [id2label[idx] for idx, label in enumerate(predictions) if label == 1.0]
25
- return predicted_labels
26
-
27
- demo = gr.Interface(fn=get_sentiment, inputs="text", outputs="json")
28
-
29
- demo.launch()