|
import streamlit as st |
|
from PIL import Image |
|
import torch |
|
from torchvision import transforms |
|
from transformers import AutoModelForImageSegmentation |
|
import io |
|
import os |
|
|
|
|
|
torch.set_float32_matmul_precision(["high", "highest"][0]) |
|
|
|
|
|
@st.cache_resource |
|
def load_model(): |
|
model = AutoModelForImageSegmentation.from_pretrained("ZhengPeng7/BiRefNet", trust_remote_code=True) |
|
model.to("cuda" if torch.cuda.is_available() else "cpu") |
|
return model |
|
|
|
birefnet = load_model() |
|
|
|
|
|
transform_image = transforms.Compose([ |
|
transforms.Resize((1024, 1024)), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
]) |
|
|
|
@st.cache_data |
|
def process(image): |
|
image_size = image.size |
|
input_images = transform_image(image).unsqueeze(0).to("cuda" if torch.cuda.is_available() else "cpu") |
|
with torch.no_grad(): |
|
preds = birefnet(input_images)[-1].sigmoid().cpu() |
|
pred = preds[0].squeeze() |
|
pred_pil = transforms.ToPILImage()(pred) |
|
mask = pred_pil.resize(image_size) |
|
image.putalpha(mask) |
|
return image |
|
|
|
def process_file(uploaded_file): |
|
try: |
|
image = Image.open(uploaded_file).convert("RGB") |
|
transparent = process(image) |
|
|
|
|
|
img_bytes = io.BytesIO() |
|
transparent.save(img_bytes, format="PNG") |
|
img_bytes = img_bytes.getvalue() |
|
|
|
return img_bytes, transparent |
|
|
|
except Exception as e: |
|
st.error(f"An error occurred: {e}") |
|
return None, None |
|
|
|
|
|
st.title("Background Removal Tool") |
|
|
|
|
|
tabs = ["Image Upload", "URL Input", "File Output"] |
|
selected_tab = st.sidebar.radio("Select Input Method", tabs) |
|
|
|
if selected_tab == "Image Upload": |
|
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) |
|
if uploaded_file is not None: |
|
image = Image.open(uploaded_file).convert("RGB") |
|
processed_image = process(image) |
|
st.image(processed_image, caption="Processed Image") |
|
|
|
elif selected_tab == "URL Input": |
|
image_url = st.text_input("Paste an image URL") |
|
if image_url: |
|
try: |
|
import requests |
|
from io import BytesIO |
|
response = requests.get(image_url, stream=True) |
|
response.raise_for_status() |
|
image = Image.open(BytesIO(response.content)).convert("RGB") |
|
processed_image = process(image) |
|
st.image(processed_image, caption="Processed Image from URL") |
|
except requests.exceptions.RequestException as e: |
|
st.error(f"Error fetching image from URL: {e}") |
|
except Exception as e: |
|
st.error(f"Error processing image: {e}") |
|
|
|
|
|
elif selected_tab == "File Output": |
|
uploaded_file = st.file_uploader("Upload an image for file output", type=["jpg", "jpeg", "png"]) |
|
if uploaded_file is not None: |
|
file_bytes, processed_image = process_file(uploaded_file) |
|
if file_bytes: |
|
st.image(processed_image, caption="Processed Image") |
|
st.download_button( |
|
label="Download PNG", |
|
data=file_bytes, |
|
file_name=f"{uploaded_file.name.rsplit('.', 1)[0]}.png", |
|
mime="image/png", |
|
) |