Spaces:
Running
Running
File size: 8,294 Bytes
2d3cd80 f7c8e01 2d3cd80 8987130 2d3cd80 8987130 2d3cd80 8987130 2d3cd80 8987130 2d3cd80 8987130 2d3cd80 8987130 2d3cd80 8987130 2d3cd80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
# app.py — Gradio-native metrics, clean UI, CUDA/CPU only
import os, math, cv2, base64
import torch, numpy as np, gradio as gr
from PIL import Image
# Optional (fine if missing)
try:
import kornia.color as kc
except Exception:
kc = None
from skimage.metrics import peak_signal_noise_ratio as psnr_metric
from skimage.metrics import structural_similarity as ssim_metric
# ---------------- Device & Model (no MPS) ----------------
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
from model import ViTUNetColorizer
CKPT = "checkpoints/checkpoint_epoch_015_20250808_154437.pt"
model = None
if os.path.exists(CKPT):
model = ViTUNetColorizer(vit_model_name="vit_tiny_patch16_224").to(device)
state = torch.load(CKPT, map_location=device)
sd = state.get("generator_state_dict", state)
model.load_state_dict(sd)
model.eval()
# ---------------- Utils ----------------
def is_grayscale(img: Image.Image) -> bool:
a = np.array(img)
if a.ndim == 2: return True
if a.ndim == 3 and a.shape[2] == 1: return True
if a.ndim == 3 and a.shape[2] == 3:
return np.allclose(a[...,0], a[...,1]) and np.allclose(a[...,1], a[...,2])
return False
def to_L(rgb_np: np.ndarray):
# ViTUNetColorizer expects L in [0,1]
if kc is None:
gray = cv2.cvtColor(rgb_np, cv2.COLOR_RGB2GRAY).astype(np.float32)
L = gray / 100.0
return torch.from_numpy(L).unsqueeze(0).unsqueeze(0).float().to(device)
t = torch.from_numpy(rgb_np.astype(np.float32)/255.).permute(2,0,1).unsqueeze(0).to(device)
with torch.no_grad():
return kc.rgb_to_lab(t)[:,0:1]/100.0
def lab_to_rgb(L, ab):
if kc is None:
lab = torch.cat([L*100.0, torch.clamp(ab, -1, 1)*110.0], dim=1)[0].permute(1,2,0).cpu().numpy()
lab = np.clip(lab, [0,-128,-128], [100,127,127]).astype(np.float32)
rgb = cv2.cvtColor(lab, cv2.COLOR_LAB2RGB)
return (np.clip(rgb,0,1)*255).astype(np.uint8)
lab = torch.cat([L*100.0, torch.clamp(ab, -1, 1)*110.0], dim=1)
with torch.no_grad():
rgb = kc.lab_to_rgb(lab)
return (torch.clamp(rgb,0,1)[0].permute(1,2,0).cpu().numpy()*255).astype(np.uint8)
def pad_to_multiple(img_np, m=16):
h,w = img_np.shape[:2]
ph, pw = math.ceil(h/m)*m, math.ceil(w/m)*m
return cv2.copyMakeBorder(img_np,0,ph-h,0,pw-w,cv2.BORDER_CONSTANT,value=(0,0,0)), (h,w)
def compute_metrics(pred, gt):
p = pred.astype(np.float32)/255.; g = gt.astype(np.float32)/255.
mae = float(np.mean(np.abs(p-g)))
psnr = float(psnr_metric(g, p, data_range=1.0))
try:
ssim = float(ssim_metric(g, p, channel_axis=2, data_range=1.0, win_size=7))
except TypeError:
ssim = float(ssim_metric(g, p, multichannel=True, data_range=1.0, win_size=7))
return round(mae,4), round(psnr,2), round(ssim,4)
# ---------------- Inference ----------------
def infer(image: Image.Image, want_metrics: bool, sizing_mode: str, show_L: bool):
if image is None:
return None, None, None, None, None, "", ""
if model is None:
return None, None, None, None, None, "", "<div>Checkpoint not found in /checkpoints.</div>"
pil = image.convert("RGB")
rgb = np.array(pil)
w,h = pil.size
was_color = not is_grayscale(pil)
proc, (oh, ow) = pad_to_multiple(rgb, 16); back = (ow, oh)
L = to_L(proc)
with torch.no_grad():
ab = model(L)
out = lab_to_rgb(L, ab)
out = out[:back[1], :back[0]]
# Metrics (Gradio-native numbers)
mae = psnr = ssim = None
if want_metrics:
mae, psnr, ssim = compute_metrics(out, np.array(pil))
# Optional L preview
extra_html = ""
if show_L:
L01 = np.clip(L[0,0].detach().cpu().numpy(),0,1)
L_vis = (L01*255).astype(np.uint8)
L_vis = cv2.cvtColor(L_vis, cv2.COLOR_GRAY2RGB)
_, buf = cv2.imencode(".png", cv2.cvtColor(L_vis, cv2.COLOR_RGB2BGR))
L_b64 = "data:image/png;base64," + base64.b64encode(buf).decode()
extra_html += f"<div><b>L-channel</b><br/><img style='max-height:140px;border-radius:12px' src='{L_b64}'/></div>"
# Subtle notice only if needed
if was_color:
extra_html += "<div style='opacity:.8;margin-top:8px'>We used a grayscale version of your image for colorization.</div>"
# Compare slider (HTML only; easy to remove if you want 100% Gradio)
_, bo = cv2.imencode(".jpg", cv2.cvtColor(np.array(pil), cv2.COLOR_RGB2BGR))
_, bc = cv2.imencode(".jpg", cv2.cvtColor(out, cv2.COLOR_RGB2BGR))
so = "data:image/jpeg;base64," + base64.b64encode(bo).decode()
sc = "data:image/jpeg;base64," + base64.b64encode(bc).decode()
compare = f"""
<div style="position:relative;max-width:500px;margin:auto;border-radius:14px;overflow:hidden;box-shadow:0 8px 20px rgba(0,0,0,.2)">
<img src="{so}" style="width:100%;display:block"/>
<div id="cmpTop" style="position:absolute;top:0;left:0;height:100%;width:50%;overflow:hidden">
<img src="{sc}" style="width:100%;display:block"/>
</div>
<input id="cmpRange" type="range" min="0" max="100" value="50"
oninput="document.getElementById('cmpTop').style.width=this.value+'%';"
style="position:absolute;left:0;right:0;bottom:8px;width:60%;margin:auto"/>
</div>
"""
return Image.fromarray(np.array(pil)), Image.fromarray(out), mae, psnr, ssim, compare, extra_html
# ---------------- Theme (fallback-safe) ----------------
def make_theme():
try:
from gradio.themes.utils import colors, fonts, sizes
return gr.themes.Soft(
primary_hue=colors.indigo,
neutral_hue=colors.gray,
font=fonts.GoogleFont("Inter"),
).set(radius_size=sizes.radius_lg, spacing_size=sizes.spacing_md)
except Exception:
return gr.themes.Soft()
THEME = make_theme()
# ---------------- UI ----------------
with gr.Blocks(theme=THEME, title="Image Colorizer") as demo:
gr.Markdown("# 🎨 Image Colorizer")
with gr.Row():
with gr.Column(scale=5):
img_in = gr.Image(
label="Upload grayscale image",
type="pil",
image_mode="RGB",
height=320,
sources=["upload", "webcam", "clipboard"]
)
with gr.Row():
show_L = gr.Checkbox(label="Show L-channel", value=False)
show_m = gr.Checkbox(label="Show metrics", value=True)
with gr.Row():
run = gr.Button("Colorize")
clr = gr.Button("Clear")
examples = gr.Examples(
examples=[os.path.join("examples", f) for f in os.listdir("examples")] if os.path.exists("examples") else [],
inputs=img_in,
examples_per_page=8,
label=None
)
with gr.Column(scale=7):
with gr.Row():
orig = gr.Image(label="Original", interactive=False, height=300, show_download_button=True)
out = gr.Image(label="Result", interactive=False, height=300, show_download_button=True)
# Pure Gradio metric fields
with gr.Row():
mae_box = gr.Number(label="MAE", interactive=False, precision=4)
psnr_box = gr.Number(label="PSNR (dB)", interactive=False, precision=2)
ssim_box = gr.Number(label="SSIM", interactive=False, precision=4)
gr.Markdown("**Compare**")
compare = gr.HTML()
extras = gr.HTML()
def _go(image, want_metrics, sizing_mode, show_L):
o, c, mae, psnr, ssim, cmp_html, extra = infer(image, want_metrics, show_L)
if not want_metrics:
mae = psnr = ssim = None
return o, c, mae, psnr, ssim, cmp_html, extra
run.click(
_go,
inputs=[img_in, show_m, show_L],
outputs=[orig, out, mae_box, psnr_box, ssim_box, compare, extras]
)
def _clear():
return None, None, None, None, None, "", ""
clr.click(_clear, inputs=None, outputs=[orig, out, mae_box, psnr_box, ssim_box, compare, extras])
if __name__ == "__main__":
# No queue, no API panel
try:
demo.launch(show_api=False)
except TypeError:
demo.launch()
|