Feat: HF Inference API
Browse files- buffalo_rag/model/rag.py +53 -67
buffalo_rag/model/rag.py
CHANGED
@@ -2,49 +2,30 @@ import os
|
|
2 |
import json
|
3 |
from typing import List, Dict, Any, Optional, Tuple
|
4 |
|
5 |
-
import
|
6 |
-
|
|
|
7 |
|
8 |
from buffalo_rag.vector_store.db import VectorStore
|
9 |
|
10 |
class BuffaloRAG:
|
11 |
-
def __init__(
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
14 |
self.vector_store = vector_store or VectorStore()
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
trust_remote_code=True,
|
24 |
-
low_cpu_mem_usage=True
|
25 |
-
)
|
26 |
-
|
27 |
-
# More conservative generation parameters for stability
|
28 |
-
self.pipe = pipeline(
|
29 |
-
"text-generation",
|
30 |
-
model=self.model,
|
31 |
-
tokenizer=self.tokenizer,
|
32 |
-
max_new_tokens=256, # Shorter outputs for stability
|
33 |
-
do_sample=False, # Use greedy decoding instead of sampling
|
34 |
-
pad_token_id=self.tokenizer.eos_token_id
|
35 |
-
)
|
36 |
-
except Exception as e:
|
37 |
-
print(f"Error loading main model: {str(e)}")
|
38 |
-
print("Falling back to smaller model...")
|
39 |
-
# Fallback to a smaller, more stable model
|
40 |
-
self.tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
41 |
-
self.model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
42 |
-
self.pipe = pipeline(
|
43 |
-
"text-generation",
|
44 |
-
model=self.model,
|
45 |
-
tokenizer=self.tokenizer,
|
46 |
-
max_new_tokens=256
|
47 |
)
|
|
|
48 |
|
49 |
def retrieve(self,
|
50 |
query: str,
|
@@ -54,46 +35,51 @@ class BuffaloRAG:
|
|
54 |
return self.vector_store.hybrid_search(query, k=k, filter_categories=filter_categories)
|
55 |
|
56 |
def format_context(self, results: List[Dict[str, Any]]) -> str:
|
57 |
-
"""
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
return
|
67 |
|
68 |
def generate_response(self, query: str, context: str) -> str:
|
69 |
"""Generate response using the language model with error handling."""
|
70 |
prompt = f"""You are a friendly and professional counselor for international students at the University at Buffalo. Respond to the student's query in a supportive, detailed, and well-structured manner.
|
71 |
|
72 |
-
For your responses:
|
73 |
-
1. Address the student respectfully and empathetically
|
74 |
-
2. Provide clear, accurate information with specific details and steps when applicable
|
75 |
-
3. Organize your answer with appropriate headings, bullet points, or numbered lists when helpful
|
76 |
-
4. If the student's question is unclear or lacks essential details, ask 1-2 specific clarifying questions to better understand their situation
|
77 |
-
5. Include relevant deadlines, contacts, or resources when appropriate
|
78 |
-
6. Conclude with a brief encouraging statement
|
79 |
-
7. Only answer related to international students at UB, if it's not related to international students at UB, just say "I'm sorry, I don't have information about that."
|
80 |
-
8. Do not entertain any questions that are not related to students at UB.
|
81 |
|
82 |
-
Question: {query}
|
83 |
|
84 |
-
Relevant Information:
|
85 |
-
{context}
|
86 |
|
87 |
-
Answer:"""
|
88 |
|
89 |
try:
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
97 |
except Exception as e:
|
98 |
print(f"Error during generation: {str(e)}")
|
99 |
# Fallback response
|
|
|
2 |
import json
|
3 |
from typing import List, Dict, Any, Optional, Tuple
|
4 |
|
5 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
6 |
+
|
7 |
+
from huggingface_hub import InferenceClient
|
8 |
|
9 |
from buffalo_rag.vector_store.db import VectorStore
|
10 |
|
11 |
class BuffaloRAG:
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
model_name: str = "meta-llama/Llama-2-7b-chat-hf",
|
15 |
+
vector_store: Optional[VectorStore] = None
|
16 |
+
):
|
17 |
+
# 1. Vector store
|
18 |
self.vector_store = vector_store or VectorStore()
|
19 |
+
|
20 |
+
# 2. Hugging Face Inference client
|
21 |
+
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
22 |
+
if not hf_token:
|
23 |
+
raise ValueError("Please set HUGGINGFACEHUB_API_TOKEN in your environment.")
|
24 |
+
self.client = InferenceClient(
|
25 |
+
provider="cerebras",
|
26 |
+
api_key=hf_token,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
)
|
28 |
+
|
29 |
|
30 |
def retrieve(self,
|
31 |
query: str,
|
|
|
35 |
return self.vector_store.hybrid_search(query, k=k, filter_categories=filter_categories)
|
36 |
|
37 |
def format_context(self, results: List[Dict[str, Any]]) -> str:
|
38 |
+
"""Concatenate retrieved passages into context."""
|
39 |
+
ctx = []
|
40 |
+
for i, r in enumerate(results, start=1):
|
41 |
+
c = r["chunk"]
|
42 |
+
ctx.append(
|
43 |
+
f"Source {i}: {c['title']}\n"
|
44 |
+
f"URL: {c['url']}\n"
|
45 |
+
f"Content: {c['content'][:500]}...\n"
|
46 |
+
)
|
47 |
+
return "\n".join(ctx)
|
48 |
|
49 |
def generate_response(self, query: str, context: str) -> str:
|
50 |
"""Generate response using the language model with error handling."""
|
51 |
prompt = f"""You are a friendly and professional counselor for international students at the University at Buffalo. Respond to the student's query in a supportive, detailed, and well-structured manner.
|
52 |
|
53 |
+
For your responses:
|
54 |
+
1. Address the student respectfully and empathetically
|
55 |
+
2. Provide clear, accurate information with specific details and steps when applicable
|
56 |
+
3. Organize your answer with appropriate headings, bullet points, or numbered lists when helpful
|
57 |
+
4. If the student's question is unclear or lacks essential details, ask 1-2 specific clarifying questions to better understand their situation
|
58 |
+
5. Include relevant deadlines, contacts, or resources when appropriate
|
59 |
+
6. Conclude with a brief encouraging statement
|
60 |
+
7. Only answer related to international students at UB, if it's not related to international students at UB, just say "I'm sorry, I don't have information about that."
|
61 |
+
8. Do not entertain any questions that are not related to students at UB.
|
62 |
|
63 |
+
Question: {query}
|
64 |
|
65 |
+
Relevant Information:
|
66 |
+
{context}
|
67 |
|
68 |
+
Answer:"""
|
69 |
|
70 |
try:
|
71 |
+
completion = self.client.chat.completions.create(
|
72 |
+
model="meta-llama/Llama-3.3-70B-Instruct",
|
73 |
+
messages=[
|
74 |
+
{
|
75 |
+
"role": "user",
|
76 |
+
"content": prompt
|
77 |
+
}
|
78 |
+
],
|
79 |
+
max_tokens=512,
|
80 |
+
)
|
81 |
+
|
82 |
+
return completion.choices[0].message.content
|
83 |
except Exception as e:
|
84 |
print(f"Error during generation: {str(e)}")
|
85 |
# Fallback response
|