File size: 4,596 Bytes
bed05fc
 
 
 
79ad113
 
ecb8e22
 
bed05fc
 
 
 
 
79ad113
bed05fc
 
 
 
 
 
 
 
 
 
79ad113
cd8cf8a
79ad113
e8d06a3
ecb8e22
bed05fc
 
 
79ad113
 
cd8cf8a
bed05fc
 
 
 
 
 
 
 
 
d332383
 
bed05fc
79ad113
bed05fc
 
 
 
 
 
 
 
 
 
 
 
79ad113
bed05fc
 
17f29f2
 
 
 
79ad113
17f29f2
 
79ad113
17f29f2
 
 
 
 
 
 
 
 
 
 
 
 
79ad113
004188e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bed05fc
7608608
 
 
 
 
 
 
 
bed05fc
7608608
bed05fc
7608608
 
 
bed05fc
 
 
 
 
17f29f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import weaviate
import langchain
import gradio as gr
from langchain.embeddings import CohereEmbeddings
from langchain.document_loaders import UnstructuredFileLoader
from langchain.vectorstores import Weaviate
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
import os
import urllib.request
import ssl
import mimetypes
from dotenv import load_dotenv
import cohere

# Load environment variables
load_dotenv()
openai_api_key = os.getenv('OPENAI')
cohere_api_key = os.getenv('COHERE')
weaviate_api_key = os.getenv('WEAVIATE')
weaviate_url = os.getenv('WEAVIATE_URL')

# Weaviate connection
auth_config = weaviate.auth.AuthApiKey(api_key=weaviate_api_key)
client = weaviate.Client(url=weaviate_url, auth_client_secret=auth_config, 
                         additional_headers={"X-Cohere-Api-Key": cohere_api_key})

# Initialize vectorstore
vectorstore = Weaviate(client, index_name="HereChat", text_key="text")
vectorstore._query_attrs = ["text", "title", "url", "views", "lang", "_additional {distance}"]
vectorstore.embedding = CohereEmbeddings(model="embed-multilingual-v2.0", cohere_api_key=cohere_api_key)

# Initialize Cohere client
co = cohere.Client(api_key=cohere_api_key)

def embed_pdf(file, collection_name):
    # Save the uploaded file
    filename = file.name
    file_path = os.path.join('./', filename)
    with open(file_path, 'wb') as f:
        f.write(file.read())

    # Checking filetype for document parsing
    mime_type = mimetypes.guess_type(file_path)[0]
    loader = UnstructuredFileLoader(file_path)
    docs = loader.load()

    # Generate embeddings and store documents in Weaviate
    embeddings = CohereEmbeddings(model="embed-multilingual-v2.0", cohere_api_key=cohere_api_key)
    for doc in docs:
        embedding = embeddings.embed([doc['text']])
        weaviate_document = {
            "text": doc['text'],
            "embedding": embedding
        }
        client.data_object.create(data_object=weaviate_document, class_name=collection_name)

    os.remove(file_path)
    return {"message": f"Documents embedded in Weaviate collection '{collection_name}'"}

def retrieve_info(query):
    llm = OpenAI(temperature=0, openai_api_key=openai_api_key)
    qa = RetrievalQA.from_chain_type(llm, retriever=vectorstore.as_retriever())
    
    # Retrieve initial results
    initial_results = qa({"query": query})

    # Assuming initial_results are in the desired format, extract the top documents
    top_docs = initial_results[:25]  # Adjust this if your result format is different

    # Rerank the top results
    reranked_results = co.rerank(query=query, documents=top_docs, top_n=3, model='rerank-english-v2.0')

    # Format the reranked results
    formatted_results = []
    for idx, r in enumerate(reranked_results):
        formatted_result = {
            "Document Rank": idx + 1,
            "Document Index": r.index,
            "Document": r.document['text'],
            "Relevance Score": f"{r.relevance_score:.2f}"
        }
        formatted_results.append(formatted_result)
        
    return {"results": formatted_results}
        # Format the reranked results and append to user prompt
    user_prompt = f"User: {query}\n"
    for idx, r in enumerate(reranked_results):
        user_prompt += f"Document {idx + 1}: {r.document['text']}\nRelevance Score: {r.relevance_score:.2f}\n\n"

    # Final API call to OpenAI
    final_response = client.chat.completions.create(
        model="gpt-4-1106-preview",
        messages=[
            {
                "role": "system",
                "content": "You are a redditor. Assess, rephrase, and explain the following. Provide long answers. Use the same words and language you receive."
            },
            {
                "role": "user",
                "content": user_prompt
            }
        ],
        temperature=1.63,
        max_tokens=2240,
        top_p=1,
        frequency_penalty=1.73,
        presence_penalty=1.76
    )

    return final_response.choices[0].text

def combined_interface(query, file, collection_name):
    if query:
        return retrieve_info(query)
    elif file is not None and collection_name:
        return embed_pdf(file, collection_name)
    else:
        return "Please enter a query or upload a PDF file."

iface = gr.Interface(
    fn=combined_interface,
    inputs=[
        gr.Textbox(label="Query", optional=True),
        gr.File(label="PDF File", type="file", optional=True),
        gr.Textbox(label="Collection Name", optional=True)
    ],
    outputs="text",
    allow_flagging="never"
)

iface.launch()