File size: 3,481 Bytes
bed05fc
 
 
 
79ad113
 
ecb8e22
 
bed05fc
 
 
 
 
79ad113
bed05fc
 
 
 
 
 
 
 
 
 
79ad113
cd8cf8a
79ad113
e8d06a3
ecb8e22
bed05fc
 
 
79ad113
 
cd8cf8a
bed05fc
 
 
 
 
 
 
 
 
d332383
 
bed05fc
79ad113
bed05fc
 
 
 
 
 
 
 
 
 
 
 
79ad113
bed05fc
 
17f29f2
 
 
 
79ad113
17f29f2
 
79ad113
17f29f2
 
 
 
 
 
 
 
 
 
 
 
 
79ad113
bed05fc
 
 
 
 
def0a86
bed05fc
 
 
 
 
 
 
 
 
9675a20
 
bed05fc
 
 
 
17f29f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import weaviate
import langchain
import gradio as gr
from langchain.embeddings import CohereEmbeddings
from langchain.document_loaders import UnstructuredFileLoader
from langchain.vectorstores import Weaviate
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
import os
import urllib.request
import ssl
import mimetypes
from dotenv import load_dotenv
import cohere

# Load environment variables
load_dotenv()
openai_api_key = os.getenv('OPENAI')
cohere_api_key = os.getenv('COHERE')
weaviate_api_key = os.getenv('WEAVIATE')
weaviate_url = os.getenv('WEAVIATE_URL')

# Weaviate connection
auth_config = weaviate.auth.AuthApiKey(api_key=weaviate_api_key)
client = weaviate.Client(url=weaviate_url, auth_client_secret=auth_config, 
                         additional_headers={"X-Cohere-Api-Key": cohere_api_key})

# Initialize vectorstore
vectorstore = Weaviate(client, index_name="HereChat", text_key="text")
vectorstore._query_attrs = ["text", "title", "url", "views", "lang", "_additional {distance}"]
vectorstore.embedding = CohereEmbeddings(model="embed-multilingual-v2.0", cohere_api_key=cohere_api_key)

# Initialize Cohere client
co = cohere.Client(api_key=cohere_api_key)

def embed_pdf(file, collection_name):
    # Save the uploaded file
    filename = file.name
    file_path = os.path.join('./', filename)
    with open(file_path, 'wb') as f:
        f.write(file.read())

    # Checking filetype for document parsing
    mime_type = mimetypes.guess_type(file_path)[0]
    loader = UnstructuredFileLoader(file_path)
    docs = loader.load()

    # Generate embeddings and store documents in Weaviate
    embeddings = CohereEmbeddings(model="embed-multilingual-v2.0", cohere_api_key=cohere_api_key)
    for doc in docs:
        embedding = embeddings.embed([doc['text']])
        weaviate_document = {
            "text": doc['text'],
            "embedding": embedding
        }
        client.data_object.create(data_object=weaviate_document, class_name=collection_name)

    os.remove(file_path)
    return {"message": f"Documents embedded in Weaviate collection '{collection_name}'"}

def retrieve_info(query):
    llm = OpenAI(temperature=0, openai_api_key=openai_api_key)
    qa = RetrievalQA.from_chain_type(llm, retriever=vectorstore.as_retriever())
    
    # Retrieve initial results
    initial_results = qa({"query": query})

    # Assuming initial_results are in the desired format, extract the top documents
    top_docs = initial_results[:25]  # Adjust this if your result format is different

    # Rerank the top results
    reranked_results = co.rerank(query=query, documents=top_docs, top_n=3, model='rerank-english-v2.0')

    # Format the reranked results
    formatted_results = []
    for idx, r in enumerate(reranked_results):
        formatted_result = {
            "Document Rank": idx + 1,
            "Document Index": r.index,
            "Document": r.document['text'],
            "Relevance Score": f"{r.relevance_score:.2f}"
        }
        formatted_results.append(formatted_result)
        
    return {"results": formatted_results}

# Gradio interface
iface = gr.Interface(
    fn=retrieve_info,
    inputs=[
        gr.Textbox(label="Query")
    ],
    outputs="text",
    allow_flagging="never"
)

# Embed PDF function
iface.add_endpoint(
    fn=embed_pdf,
    inputs=[
        gr.File(label="PDF File", type="file"),
        gr.Textbox(label="Collection Name")
    ],
    outputs="text"
)

iface.launch()