Spaces:
Runtime error
Runtime error
File size: 6,860 Bytes
bed05fc c131331 bed05fc 79ad113 ecb8e22 bed05fc 79ad113 c131331 bed05fc c131331 6ea539a 79ad113 51f2e7f e7bf3ba 51f2e7f e7bf3ba 51f2e7f e7bf3ba 51f2e7f e7bf3ba 51f2e7f e7bf3ba 51f2e7f e7bf3ba 51f2e7f e7bf3ba 51f2e7f e7bf3ba 51f2e7f e8d06a3 ecb8e22 bed05fc 79ad113 cd8cf8a bed05fc d332383 bed05fc 79ad113 bed05fc 79ad113 bed05fc 17f29f2 79ad113 17f29f2 79ad113 17f29f2 79ad113 004188e bed05fc 7608608 bed05fc 7608608 bed05fc 7a887e8 bed05fc 7a887e8 bed05fc 51f2e7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import weaviate
import langchain
import apscheduler
import gradio as gr
from langchain.embeddings import CohereEmbeddings
from langchain.document_loaders import UnstructuredFileLoader
from langchain.vectorstores import Weaviate
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
import os
import urllib.request
import ssl
import mimetypes
from dotenv import load_dotenv
import cohere
from apscheduler.schedulers.background import BackgroundScheduler
import time
# Load environment variables
load_dotenv()
openai_api_key = os.getenv('OPENAI')
cohere_api_key = os.getenv('COHERE')
weaviate_api_key = os.getenv('WEAVIATE')
weaviate_url = os.getenv('WEAVIATE_URL')
weaviate_username = os.getenv('WEAVIATE_USERNAME')
weaviate_password = os.getenv('WEAVIATE_PASSWORD')
# Function to refresh authentication
def refresh_authentication():
global my_credentials, client
my_credentials = weaviate.auth.AuthClientPassword(username=weaviate_username, password=weaviate_password)
client = weaviate.Client(weaviate_url, auth_client_secret=my_credentials)
# Initialize the scheduler for authentication refresh
scheduler = BackgroundScheduler()
scheduler.add_job(refresh_authentication, 'interval', minutes=30)
scheduler.start()
# Initial authentication
refresh_authentication()
Article = {
"class": "Article",
"description": "A class representing articles in the application",
"vectorIndexType": "hnsw",
"vectorIndexConfig": {
},
"vectorizer": "text2vec-contextionary",
"moduleConfig": {
"text2vec-contextionary": {
"vectorizeClassName": True
}
},
"properties": [
{
"name": "title",
"description": "The title of the article",
"dataType": ["text"],
"moduleConfig": {
"text2vec-contextionary": {
"skip": False,
"vectorizePropertyName": True
}
},
"indexFilterable": True,
"indexSearchable": True
},
{
"name": "content",
"description": "The content of the article",
"dataType": ["text"],
"moduleConfig": {
"text2vec-contextionary": {
"skip": False,
"vectorizePropertyName": True
}
},
"indexFilterable": True,
"indexSearchable": True
},
{
"name": "author",
"description": "The author of the article",
"dataType": ["text"],
"indexFilterable": True,
"indexSearchable": True
},
{
"name": "publishDate",
"description": "The date the article was published",
"dataType": ["date"],
"indexFilterable": True,
"indexSearchable": True
}
],
"invertedIndexConfig": {
"stopwords": {
"preset": "en",
"additions": [],
"removals": []
},
"indexTimestamps": True,
"indexNullState": True,
"indexPropertyLength": True,
"bm25": {
"b": 0.75,
"k1": 1.2
}
},
"shardingConfig": {
"virtualPerPhysical": 128,
"desiredCount": 1,
"actualCount": 1,
"desiredVirtualCount": 128,
"actualVirtualCount": 128,
"key": "_id",
"strategy": "hash",
"function": "murmur3"
},
"multiTenancyConfig": {
"enabled": false
}
}
# Initialize vectorstore
vectorstore = Weaviate(client, index_name="HereChat", text_key="text")
vectorstore._query_attrs = ["text", "title", "url", "views", "lang", "_additional {distance}"]
vectorstore.embedding = CohereEmbeddings(model="embed-multilingual-v2.0", cohere_api_key=cohere_api_key)
# Initialize Cohere client
co = cohere.Client(api_key=cohere_api_key)
def embed_pdf(file, collection_name):
# Save the uploaded file
filename = file.name
file_path = os.path.join('./', filename)
with open(file_path, 'wb') as f:
f.write(file.read())
# Checking filetype for document parsing
mime_type = mimetypes.guess_type(file_path)[0]
loader = UnstructuredFileLoader(file_path)
docs = loader.load()
# Generate embeddings and store documents in Weaviate
embeddings = CohereEmbeddings(model="embed-multilingual-v2.0", cohere_api_key=cohere_api_key)
for doc in docs:
embedding = embeddings.embed([doc['text']])
weaviate_document = {
"text": doc['text'],
"embedding": embedding
}
client.data_object.create(data_object=weaviate_document, class_name=collection_name)
os.remove(file_path)
return {"message": f"Documents embedded in Weaviate collection '{collection_name}'"}
def retrieve_info(query):
llm = OpenAI(temperature=0, openai_api_key=openai_api_key)
qa = RetrievalQA.from_chain_type(llm, retriever=vectorstore.as_retriever())
# Retrieve initial results
initial_results = qa({"query": query})
# Assuming initial_results are in the desired format, extract the top documents
top_docs = initial_results[:25] # Adjust this if your result format is different
# Rerank the top results
reranked_results = co.rerank(query=query, documents=top_docs, top_n=3, model='rerank-english-v2.0')
# Format the reranked results
formatted_results = []
for idx, r in enumerate(reranked_results):
formatted_result = {
"Document Rank": idx + 1,
"Document Index": r.index,
"Document": r.document['text'],
"Relevance Score": f"{r.relevance_score:.2f}"
}
formatted_results.append(formatted_result)
return {"results": formatted_results}
# Format the reranked results and append to user prompt
user_prompt = f"User: {query}\n"
for idx, r in enumerate(reranked_results):
user_prompt += f"Document {idx + 1}: {r.document['text']}\nRelevance Score: {r.relevance_score:.2f}\n\n"
# Final API call to OpenAI
final_response = client.chat.completions.create(
model="gpt-4-1106-preview",
messages=[
{
"role": "system",
"content": "You are a redditor. Assess, rephrase, and explain the following. Provide long answers. Use the same words and language you receive."
},
{
"role": "user",
"content": user_prompt
}
],
temperature=1.63,
max_tokens=2240,
top_p=1,
frequency_penalty=1.73,
presence_penalty=1.76
)
return final_response.choices[0].text
def combined_interface(query, file, collection_name):
if query:
return retrieve_info(query)
elif file is not None and collection_name:
return embed_pdf(file, collection_name)
else:
return "Please enter a query or upload a PDF file."
iface = gr.Interface(
fn=combined_interface,
inputs=[
gr.Textbox(label="Query"),
gr.File(label="PDF File"),
gr.Textbox(label="Collection Name")
],
outputs="text"
)
iface.launch() |