File size: 6,860 Bytes
bed05fc
 
c131331
bed05fc
 
79ad113
 
ecb8e22
 
bed05fc
 
 
 
 
79ad113
c131331
 
bed05fc
 
 
 
 
 
 
c131331
 
 
 
6ea539a
 
 
 
 
 
 
 
 
 
 
 
 
79ad113
51f2e7f
 
 
 
 
 
 
 
 
e7bf3ba
51f2e7f
 
 
 
 
 
 
 
 
e7bf3ba
 
51f2e7f
 
e7bf3ba
 
51f2e7f
 
 
 
 
 
 
e7bf3ba
 
51f2e7f
 
e7bf3ba
 
51f2e7f
 
 
 
 
e7bf3ba
 
51f2e7f
 
 
 
 
e7bf3ba
 
51f2e7f
 
 
 
 
 
 
 
e7bf3ba
 
 
51f2e7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8d06a3
ecb8e22
bed05fc
 
 
79ad113
 
cd8cf8a
bed05fc
 
 
 
 
 
 
 
 
d332383
 
bed05fc
79ad113
bed05fc
 
 
 
 
 
 
 
 
 
 
 
79ad113
bed05fc
 
17f29f2
 
 
 
79ad113
17f29f2
 
79ad113
17f29f2
 
 
 
 
 
 
 
 
 
 
 
 
79ad113
004188e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bed05fc
7608608
 
 
 
 
 
 
 
bed05fc
7608608
bed05fc
7a887e8
 
 
bed05fc
7a887e8
bed05fc
 
51f2e7f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import weaviate
import langchain
import apscheduler
import gradio as gr
from langchain.embeddings import CohereEmbeddings
from langchain.document_loaders import UnstructuredFileLoader
from langchain.vectorstores import Weaviate
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
import os
import urllib.request
import ssl
import mimetypes
from dotenv import load_dotenv
import cohere
from apscheduler.schedulers.background import BackgroundScheduler
import time

# Load environment variables
load_dotenv()
openai_api_key = os.getenv('OPENAI')
cohere_api_key = os.getenv('COHERE')
weaviate_api_key = os.getenv('WEAVIATE')
weaviate_url = os.getenv('WEAVIATE_URL')
weaviate_username = os.getenv('WEAVIATE_USERNAME')
weaviate_password = os.getenv('WEAVIATE_PASSWORD')


# Function to refresh authentication
def refresh_authentication():
    global my_credentials, client
    my_credentials = weaviate.auth.AuthClientPassword(username=weaviate_username, password=weaviate_password)
    client = weaviate.Client(weaviate_url, auth_client_secret=my_credentials)

# Initialize the scheduler for authentication refresh
scheduler = BackgroundScheduler()
scheduler.add_job(refresh_authentication, 'interval', minutes=30)
scheduler.start()

# Initial authentication
refresh_authentication()

Article = {
  "class": "Article",
  "description": "A class representing articles in the application",
  "vectorIndexType": "hnsw",
  "vectorIndexConfig": {
  },
  "vectorizer": "text2vec-contextionary",
  "moduleConfig": {
    "text2vec-contextionary": {
      "vectorizeClassName": True
    }
  },
  "properties": [
    {
      "name": "title",
      "description": "The title of the article",
      "dataType": ["text"],
      "moduleConfig": {
        "text2vec-contextionary": {
          "skip": False,
          "vectorizePropertyName": True
        }
      },
      "indexFilterable": True,
      "indexSearchable": True
    },
    {
      "name": "content",
      "description": "The content of the article",
      "dataType": ["text"],
      "moduleConfig": {
        "text2vec-contextionary": {
          "skip": False,
          "vectorizePropertyName": True
        }
      },
      "indexFilterable": True,
      "indexSearchable": True
    },
    {
      "name": "author",
      "description": "The author of the article",
      "dataType": ["text"],
      "indexFilterable": True,
      "indexSearchable": True
    },
    {
      "name": "publishDate",
      "description": "The date the article was published",
      "dataType": ["date"],
      "indexFilterable": True,
      "indexSearchable": True
    }
  ],
  "invertedIndexConfig": {
    "stopwords": {
      "preset": "en",
      "additions": [],
      "removals": []
    },
    "indexTimestamps": True,
    "indexNullState": True,
    "indexPropertyLength": True,
    "bm25": {
      "b": 0.75,
      "k1": 1.2
    }
  },
  "shardingConfig": {
    "virtualPerPhysical": 128,
    "desiredCount": 1,
    "actualCount": 1,
    "desiredVirtualCount": 128,
    "actualVirtualCount": 128,
    "key": "_id",
    "strategy": "hash",
    "function": "murmur3"
  },
  "multiTenancyConfig": {
    "enabled": false
  }
}

# Initialize vectorstore
vectorstore = Weaviate(client, index_name="HereChat", text_key="text")
vectorstore._query_attrs = ["text", "title", "url", "views", "lang", "_additional {distance}"]
vectorstore.embedding = CohereEmbeddings(model="embed-multilingual-v2.0", cohere_api_key=cohere_api_key)

# Initialize Cohere client
co = cohere.Client(api_key=cohere_api_key)

def embed_pdf(file, collection_name):
    # Save the uploaded file
    filename = file.name
    file_path = os.path.join('./', filename)
    with open(file_path, 'wb') as f:
        f.write(file.read())

    # Checking filetype for document parsing
    mime_type = mimetypes.guess_type(file_path)[0]
    loader = UnstructuredFileLoader(file_path)
    docs = loader.load()

    # Generate embeddings and store documents in Weaviate
    embeddings = CohereEmbeddings(model="embed-multilingual-v2.0", cohere_api_key=cohere_api_key)
    for doc in docs:
        embedding = embeddings.embed([doc['text']])
        weaviate_document = {
            "text": doc['text'],
            "embedding": embedding
        }
        client.data_object.create(data_object=weaviate_document, class_name=collection_name)

    os.remove(file_path)
    return {"message": f"Documents embedded in Weaviate collection '{collection_name}'"}

def retrieve_info(query):
    llm = OpenAI(temperature=0, openai_api_key=openai_api_key)
    qa = RetrievalQA.from_chain_type(llm, retriever=vectorstore.as_retriever())
    
    # Retrieve initial results
    initial_results = qa({"query": query})

    # Assuming initial_results are in the desired format, extract the top documents
    top_docs = initial_results[:25]  # Adjust this if your result format is different

    # Rerank the top results
    reranked_results = co.rerank(query=query, documents=top_docs, top_n=3, model='rerank-english-v2.0')

    # Format the reranked results
    formatted_results = []
    for idx, r in enumerate(reranked_results):
        formatted_result = {
            "Document Rank": idx + 1,
            "Document Index": r.index,
            "Document": r.document['text'],
            "Relevance Score": f"{r.relevance_score:.2f}"
        }
        formatted_results.append(formatted_result)
        
    return {"results": formatted_results}
        # Format the reranked results and append to user prompt
    user_prompt = f"User: {query}\n"
    for idx, r in enumerate(reranked_results):
        user_prompt += f"Document {idx + 1}: {r.document['text']}\nRelevance Score: {r.relevance_score:.2f}\n\n"

    # Final API call to OpenAI
    final_response = client.chat.completions.create(
        model="gpt-4-1106-preview",
        messages=[
            {
                "role": "system",
                "content": "You are a redditor. Assess, rephrase, and explain the following. Provide long answers. Use the same words and language you receive."
            },
            {
                "role": "user",
                "content": user_prompt
            }
        ],
        temperature=1.63,
        max_tokens=2240,
        top_p=1,
        frequency_penalty=1.73,
        presence_penalty=1.76
    )

    return final_response.choices[0].text

def combined_interface(query, file, collection_name):
    if query:
        return retrieve_info(query)
    elif file is not None and collection_name:
        return embed_pdf(file, collection_name)
    else:
        return "Please enter a query or upload a PDF file."

iface = gr.Interface(
    fn=combined_interface,
    inputs=[
        gr.Textbox(label="Query"),
        gr.File(label="PDF File"),
        gr.Textbox(label="Collection Name")
    ],
    outputs="text"
)

iface.launch()