Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -118,20 +118,19 @@ vectorstore.embedding = CohereEmbeddings(model="embed-multilingual-v2.0", cohere
|
|
118 |
# Initialize Cohere client
|
119 |
co = cohere.Client(api_key=cohere_api_key)
|
120 |
|
121 |
-
def embed_pdf(file, collection_name):
|
122 |
-
#
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
file_content = file
|
|
|
|
|
|
|
129 |
else:
|
130 |
-
|
131 |
-
file_content = file
|
132 |
-
|
133 |
-
with open(file_path, 'wb') as f:
|
134 |
-
f.write(file_content)
|
135 |
|
136 |
# Checking filetype for document parsing
|
137 |
mime_type = mimetypes.guess_type(file_path)[0]
|
@@ -148,9 +147,11 @@ def embed_pdf(file, collection_name):
|
|
148 |
}
|
149 |
client.data_object.create(data_object=weaviate_document, class_name=collection_name)
|
150 |
|
151 |
-
|
|
|
|
|
152 |
return {"message": f"Documents embedded in Weaviate collection '{collection_name}'"}
|
153 |
-
|
154 |
def retrieve_info(query):
|
155 |
llm = OpenAI(temperature=0, openai_api_key=openai_api_key)
|
156 |
qa = RetrievalQA.from_chain_type(llm, retriever=vectorstore.as_retriever())
|
@@ -214,7 +215,6 @@ def combined_interface(query, file, collection_name):
|
|
214 |
else:
|
215 |
return "Please enter a query or upload a PDF file."
|
216 |
|
217 |
-
|
218 |
iface = gr.Interface(
|
219 |
fn=combined_interface,
|
220 |
inputs=[
|
|
|
118 |
# Initialize Cohere client
|
119 |
co = cohere.Client(api_key=cohere_api_key)
|
120 |
|
121 |
+
def embed_pdf(file, filename, collection_name):
|
122 |
+
# Check if the input is a filepath (str) or binary (bytes)
|
123 |
+
if isinstance(file, str): # filepath
|
124 |
+
file_path = file
|
125 |
+
with open(file_path, 'rb') as f:
|
126 |
+
file_content = f.read()
|
127 |
+
elif isinstance(file, bytes): # binary
|
128 |
+
file_content = file
|
129 |
+
file_path = os.path.join('./', filename)
|
130 |
+
with open(file_path, 'wb') as f:
|
131 |
+
f.write(file_content)
|
132 |
else:
|
133 |
+
return {"error": "Invalid file format"}
|
|
|
|
|
|
|
|
|
134 |
|
135 |
# Checking filetype for document parsing
|
136 |
mime_type = mimetypes.guess_type(file_path)[0]
|
|
|
147 |
}
|
148 |
client.data_object.create(data_object=weaviate_document, class_name=collection_name)
|
149 |
|
150 |
+
# Clean up if a temporary file was created
|
151 |
+
if isinstance(file, bytes):
|
152 |
+
os.remove(file_path)
|
153 |
return {"message": f"Documents embedded in Weaviate collection '{collection_name}'"}
|
154 |
+
|
155 |
def retrieve_info(query):
|
156 |
llm = OpenAI(temperature=0, openai_api_key=openai_api_key)
|
157 |
qa = RetrievalQA.from_chain_type(llm, retriever=vectorstore.as_retriever())
|
|
|
215 |
else:
|
216 |
return "Please enter a query or upload a PDF file."
|
217 |
|
|
|
218 |
iface = gr.Interface(
|
219 |
fn=combined_interface,
|
220 |
inputs=[
|