Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
from datasets import load_dataset | |
import soundfile as sf | |
# Check if CUDA is available and set the device | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
# Load the model and processor | |
model_id = "openai/whisper-large-v3" | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=False, use_safetensors=True | |
).to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
# Define the ASR pipeline | |
asr_pipeline = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
max_new_tokens=128, | |
chunk_length_s=30, | |
batch_size=16, | |
return_timestamps=True, | |
torch_dtype=torch_dtype, | |
device=device, | |
) | |
# Function to process audio in chunks and return the combined text | |
def process_audio(file_info): | |
path = file_info["path"] | |
audio_stream = sf.SoundFile(path, 'r') | |
results = [] | |
while True: | |
data = audio_stream.read(dtype='float32') | |
if len(data) == 0: | |
break | |
result = asr_pipeline(data) | |
results.append(result) | |
audio_stream.close() | |
combined_text = " ".join([r["text"] for r in results]) | |
return combined_text | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=process_audio, | |
inputs=gr.Audio(label="Upload your audio file or use the microphone"), | |
outputs="text", | |
title="👋🏻Welcome To 🙋🏻♂️Patrick's Whisper🌬️", | |
description="""" | |
You can use this Space to test out the current model [Whisper3Large](https://huggingface.co/openai/whisper-large-v3) | |
You can also use 🙋🏻♂️Patrick's Whisper🌬️ by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/PatsWhisper3Large?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> | |
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha) | |
""" | |
) | |
# Launch the application | |
iface.launch() |