Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
4 |
+
from datasets import load_dataset
|
5 |
+
import soundfile as sf
|
6 |
+
|
7 |
+
# Check if CUDA is available and set the device
|
8 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
10 |
+
|
11 |
+
# Load the model and processor
|
12 |
+
model_id = "openai/whisper-large-v3"
|
13 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
14 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
15 |
+
).to(device)
|
16 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
17 |
+
|
18 |
+
# Define the ASR pipeline
|
19 |
+
asr_pipeline = pipeline(
|
20 |
+
"automatic-speech-recognition",
|
21 |
+
model=model,
|
22 |
+
tokenizer=processor.tokenizer,
|
23 |
+
feature_extractor=processor.feature_extractor,
|
24 |
+
max_new_tokens=128,
|
25 |
+
chunk_length_s=30,
|
26 |
+
batch_size=16,
|
27 |
+
return_timestamps=True,
|
28 |
+
torch_dtype=torch_dtype,
|
29 |
+
device=device,
|
30 |
+
)
|
31 |
+
|
32 |
+
# Function to process audio in chunks and return the combined text
|
33 |
+
def process_audio(file_info):
|
34 |
+
path = file_info["path"]
|
35 |
+
audio_stream = sf.SoundFile(path, 'r')
|
36 |
+
results = []
|
37 |
+
while True:
|
38 |
+
data = audio_stream.read(dtype='float32')
|
39 |
+
if len(data) == 0:
|
40 |
+
break
|
41 |
+
result = asr_pipeline(data)
|
42 |
+
results.append(result)
|
43 |
+
audio_stream.close()
|
44 |
+
combined_text = " ".join([r["text"] for r in results])
|
45 |
+
return combined_text
|
46 |
+
|
47 |
+
# Create the Gradio interface
|
48 |
+
iface = gr.Interface(
|
49 |
+
fn=process_audio,
|
50 |
+
inputs=gr.inputs.Audio(source="upload", type="file", label="Upload your audio file"),
|
51 |
+
outputs="text",
|
52 |
+
title="👋🏻Welcome To 🙋🏻♂️Patrick's Whisper🌬️",
|
53 |
+
description="Upload a large audio file to transcribe it into text using [Whisper3Large](https://huggingface.co/openai/whisper-large-v3) !",
|
54 |
+
)
|
55 |
+
|
56 |
+
# Launch the application
|
57 |
+
iface.launch()
|