import gradio as gr import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline from datasets import load_dataset import soundfile as sf # Check if CUDA is available and set the device device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 # Load the model and processor model_id = "openai/whisper-large-v3" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ).to(device) processor = AutoProcessor.from_pretrained(model_id) # Define the ASR pipeline asr_pipeline = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=30, batch_size=16, return_timestamps=True, torch_dtype=torch_dtype, device=device, ) # Function to process audio in chunks and return the combined text def process_audio(file_info): path = file_info["path"] audio_stream = sf.SoundFile(path, 'r') results = [] while True: data = audio_stream.read(dtype='float32') if len(data) == 0: break result = asr_pipeline(data) results.append(result) audio_stream.close() combined_text = " ".join([r["text"] for r in results]) return combined_text # Create the Gradio interface iface = gr.Interface( fn=process_audio, inputs=gr.inputs.Audio(source="upload", type="file", label="Upload your audio file"), outputs="text", title="👋🏻Welcome To 🙋🏻‍♂️Patrick's Whisper🌬️", description="Upload a large audio file to transcribe it into text using [Whisper3Large](https://huggingface.co/openai/whisper-large-v3) !", ) # Launch the application iface.launch()