Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torchaudio
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def speech_to_text(audio_file):
|
| 7 |
+
audio_input, _ = torchaudio.load(audio_file.name)
|
| 8 |
+
s2t_model = torch.jit.load("unity_on_device_s2t.ptl")
|
| 9 |
+
with torch.no_grad():
|
| 10 |
+
text = s2t_model(audio_input, tgt_lang=TGT_LANG)
|
| 11 |
+
return text
|
| 12 |
+
|
| 13 |
+
def speech_to_speech_translation(audio_file):
|
| 14 |
+
audio_input, _ = torchaudio.load(audio_file.name)
|
| 15 |
+
s2st_model = torch.jit.load("unity_on_device.ptl")
|
| 16 |
+
with torch.no_grad():
|
| 17 |
+
text, units, waveform = s2st_model(audio_input, tgt_lang=TGT_LANG)
|
| 18 |
+
output_file = "/tmp/result.wav"
|
| 19 |
+
torchaudio.save(output_file, waveform.unsqueeze(0), sample_rate=16000)
|
| 20 |
+
return text, output_file
|
| 21 |
+
|
| 22 |
+
# Gradio interfaces
|
| 23 |
+
iface_s2t = gr.Interface(
|
| 24 |
+
fn=speech_to_text,
|
| 25 |
+
inputs=gr.inputs.Audio(type="file", label="Upload Audio for Speech to Text"),
|
| 26 |
+
outputs="text",
|
| 27 |
+
title="Speech to Text"
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
iface_s2st = gr.Interface(
|
| 31 |
+
fn=speech_to_speech_translation,
|
| 32 |
+
inputs=gr.inputs.Audio(type="file", label="Upload Audio for Speech to Speech Translation"),
|
| 33 |
+
outputs=["text", "audio"],
|
| 34 |
+
title="Speech to Speech Translation"
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
# Combine into a tabbed interface
|
| 38 |
+
iface = gr.TabbedInterface([iface_s2t, iface_s2st], ["Speech to Text", "Speech to Speech Translation"])
|
| 39 |
+
iface.launch()
|