Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,19 +2,27 @@ import gradio as gr
|
|
| 2 |
import torchaudio
|
| 3 |
import torch
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
def speech_to_text(
|
| 7 |
-
audio_input, _ = torchaudio.load(
|
| 8 |
s2t_model = torch.jit.load("unity_on_device_s2t.ptl")
|
| 9 |
with torch.no_grad():
|
| 10 |
-
text = s2t_model(audio_input, tgt_lang=
|
| 11 |
return text
|
| 12 |
|
| 13 |
-
def speech_to_speech_translation(
|
| 14 |
-
audio_input, _ = torchaudio.load(
|
| 15 |
s2st_model = torch.jit.load("unity_on_device.ptl")
|
| 16 |
with torch.no_grad():
|
| 17 |
-
text, units, waveform = s2st_model(audio_input, tgt_lang=
|
| 18 |
output_file = "/tmp/result.wav"
|
| 19 |
torchaudio.save(output_file, waveform.unsqueeze(0), sample_rate=16000)
|
| 20 |
return text, output_file
|
|
@@ -22,14 +30,20 @@ def speech_to_speech_translation(audio_file):
|
|
| 22 |
# Gradio interfaces
|
| 23 |
iface_s2t = gr.Interface(
|
| 24 |
fn=speech_to_text,
|
| 25 |
-
inputs=
|
|
|
|
|
|
|
|
|
|
| 26 |
outputs="text",
|
| 27 |
title="Speech to Text"
|
| 28 |
)
|
| 29 |
|
| 30 |
iface_s2st = gr.Interface(
|
| 31 |
fn=speech_to_speech_translation,
|
| 32 |
-
inputs=
|
|
|
|
|
|
|
|
|
|
| 33 |
outputs=["text", "audio"],
|
| 34 |
title="Speech to Speech Translation"
|
| 35 |
)
|
|
|
|
| 2 |
import torchaudio
|
| 3 |
import torch
|
| 4 |
|
| 5 |
+
# Define the list of target languages
|
| 6 |
+
languages = {
|
| 7 |
+
"English": "eng",
|
| 8 |
+
"Hindi": "hin",
|
| 9 |
+
"Portuguese": "por",
|
| 10 |
+
"Russian": "rus",
|
| 11 |
+
"Spanish": "spa"
|
| 12 |
+
}
|
| 13 |
|
| 14 |
+
def speech_to_text(audio_data, tgt_lang):
|
| 15 |
+
audio_input, _ = torchaudio.load(audio_data)
|
| 16 |
s2t_model = torch.jit.load("unity_on_device_s2t.ptl")
|
| 17 |
with torch.no_grad():
|
| 18 |
+
text = s2t_model(audio_input, tgt_lang=languages[tgt_lang])
|
| 19 |
return text
|
| 20 |
|
| 21 |
+
def speech_to_speech_translation(audio_data, tgt_lang):
|
| 22 |
+
audio_input, _ = torchaudio.load(audio_data)
|
| 23 |
s2st_model = torch.jit.load("unity_on_device.ptl")
|
| 24 |
with torch.no_grad():
|
| 25 |
+
text, units, waveform = s2st_model(audio_input, tgt_lang=languages[tgt_lang])
|
| 26 |
output_file = "/tmp/result.wav"
|
| 27 |
torchaudio.save(output_file, waveform.unsqueeze(0), sample_rate=16000)
|
| 28 |
return text, output_file
|
|
|
|
| 30 |
# Gradio interfaces
|
| 31 |
iface_s2t = gr.Interface(
|
| 32 |
fn=speech_to_text,
|
| 33 |
+
inputs=[
|
| 34 |
+
gr.inputs.Audio(label="Upload or Record Audio for Speech to Text"),
|
| 35 |
+
gr.inputs.Dropdown(list(languages.keys()), label="Select Target Language")
|
| 36 |
+
],
|
| 37 |
outputs="text",
|
| 38 |
title="Speech to Text"
|
| 39 |
)
|
| 40 |
|
| 41 |
iface_s2st = gr.Interface(
|
| 42 |
fn=speech_to_speech_translation,
|
| 43 |
+
inputs=[
|
| 44 |
+
gr.inputs.Audio(label="Upload or Record Audio for Speech to Speech Translation"),
|
| 45 |
+
gr.inputs.Dropdown(list(languages.keys()), label="Select Target Language")
|
| 46 |
+
],
|
| 47 |
outputs=["text", "audio"],
|
| 48 |
title="Speech to Speech Translation"
|
| 49 |
)
|