Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,64 +6,23 @@ from decouple import Config
|
|
| 6 |
config = Config('.env')
|
| 7 |
|
| 8 |
def query_vectara(question):
|
| 9 |
-
# Get the user's message from the chat history
|
| 10 |
user_message = question
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
customer_id = config('CUSTOMER_ID')
|
| 14 |
-
corpus_id = config('CORPUS_ID')
|
| 15 |
-
api_key = config('API_KEY')
|
| 16 |
|
| 17 |
-
|
|
|
|
| 18 |
|
| 19 |
headers = {
|
| 20 |
-
"
|
| 21 |
-
"authorization": f"Bearer {api_key}", # Corrected authorization header
|
| 22 |
-
"customer-id": customer_id,
|
| 23 |
}
|
| 24 |
|
| 25 |
query_body = {
|
| 26 |
-
"query":
|
| 27 |
-
|
| 28 |
-
"query": user_message,
|
| 29 |
-
"queryContext": "",
|
| 30 |
-
"start": 0,
|
| 31 |
-
"numResults": 10,
|
| 32 |
-
"contextConfig": {
|
| 33 |
-
"charsBefore": 0,
|
| 34 |
-
"charsAfter": 0,
|
| 35 |
-
"sentencesBefore": 2,
|
| 36 |
-
"sentencesAfter": 2,
|
| 37 |
-
"startTag": "%START_SNIPPET%",
|
| 38 |
-
"endTag": "%END_SNIPPET%",
|
| 39 |
-
},
|
| 40 |
-
"rerankingConfig": {
|
| 41 |
-
"rerankerId": 272725718,
|
| 42 |
-
"mmrConfig": {
|
| 43 |
-
"diversityBias": 0.3
|
| 44 |
-
}
|
| 45 |
-
},
|
| 46 |
-
"corpusKey": [
|
| 47 |
-
{
|
| 48 |
-
"customerId": customer_id,
|
| 49 |
-
"corpusId": corpus_id,
|
| 50 |
-
"semantics": 0,
|
| 51 |
-
"metadataFilter": "",
|
| 52 |
-
"lexicalInterpolationConfig": {
|
| 53 |
-
"lambda": 0
|
| 54 |
-
},
|
| 55 |
-
"dim": []
|
| 56 |
-
}
|
| 57 |
-
],
|
| 58 |
-
"summary": [
|
| 59 |
-
{
|
| 60 |
-
"maxSummarizedResults": 5,
|
| 61 |
-
"responseLang": "eng",
|
| 62 |
-
"summarizerPromptName": "vectara-summary-ext-v1.2.0"
|
| 63 |
-
}
|
| 64 |
-
]
|
| 65 |
-
}
|
| 66 |
-
]
|
| 67 |
}
|
| 68 |
|
| 69 |
query_response = requests.post(query_url, json=query_body, headers=headers)
|
|
@@ -76,7 +35,6 @@ def query_vectara(question):
|
|
| 76 |
|
| 77 |
return response_message
|
| 78 |
|
| 79 |
-
# Create a Gradio ChatInterface with only a text input
|
| 80 |
iface = gr.Interface(
|
| 81 |
fn=query_vectara,
|
| 82 |
inputs=[gr.Textbox(label="Input Text")],
|
|
|
|
| 6 |
config = Config('.env')
|
| 7 |
|
| 8 |
def query_vectara(question):
|
|
|
|
| 9 |
user_message = question
|
| 10 |
|
| 11 |
+
# Read authentication parameters from the .env file
|
| 12 |
+
customer_id = config('CUSTOMER_ID')
|
| 13 |
+
corpus_id = config('CORPUS_ID')
|
| 14 |
+
api_key = config('API_KEY')
|
| 15 |
|
| 16 |
+
# Define the query URL
|
| 17 |
+
query_url = f"https://api.vectara.io:443/v1/query?customer_id={customer_id}&corpus_id={corpus_id}"
|
| 18 |
|
| 19 |
headers = {
|
| 20 |
+
"x-api-key": api_key, # Use the x-api-key header for authentication
|
|
|
|
|
|
|
| 21 |
}
|
| 22 |
|
| 23 |
query_body = {
|
| 24 |
+
"query": user_message,
|
| 25 |
+
"num_results": 10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
}
|
| 27 |
|
| 28 |
query_response = requests.post(query_url, json=query_body, headers=headers)
|
|
|
|
| 35 |
|
| 36 |
return response_message
|
| 37 |
|
|
|
|
| 38 |
iface = gr.Interface(
|
| 39 |
fn=query_vectara,
|
| 40 |
inputs=[gr.Textbox(label="Input Text")],
|