File size: 12,312 Bytes
ffba568
49bd6dc
 
ffba568
49bd6dc
 
 
 
 
 
0a6faf3
32e039b
49bd6dc
 
 
 
d3a3a84
49bd6dc
25aa84d
49bd6dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5207986
d12dd66
2f6138a
d12dd66
522f297
 
 
 
2f6138a
 
 
9bffb27
522f297
2f6138a
25aa84d
49bd6dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b89ed3f
49bd6dc
 
 
 
 
 
 
 
 
25aa84d
49bd6dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3ac640
25aa84d
522f297
ce14d7b
522f297
 
 
 
 
 
 
e3ac640
ecc3149
 
577a43e
ecc3149
 
 
 
49bd6dc
25aa84d
9bffb27
25aa84d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d056e6
66499ca
25aa84d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66499ca
25aa84d
 
 
 
 
 
 
 
 
9bffb27
ed42d17
25aa84d
 
 
 
 
4cbbd3b
25aa84d
49bd6dc
25aa84d
 
 
 
 
 
 
 
 
 
ed42d17
25aa84d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49bd6dc
ed42d17
25aa84d
 
 
 
49bd6dc
 
6252649
49bd6dc
ed42d17
bdfdac3
 
 
 
49bd6dc
7c0dbc1
32e039b
7c0dbc1
 
0b0cd44
 
7c0dbc1
ec3bf4d
 
7c0dbc1
 
 
ec3bf4d
e485172
 
 
5207986
 
e485172
1a1a57c
ecc3149
2f6138a
e535f32
5207986
 
ec3bf4d
 
e485172
 
 
5207986
 
e485172
 
 
 
 
5207986
 
e485172
 
 
 
 
5207986
 
e485172
49bd6dc
6252649
 
 
 
 
49bd6dc
 
9d0b93f
49bd6dc
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
from modelscope import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, snapshot_download
from argparse import ArgumentParser
from pathlib import Path
import shutil
import copy
import gradio as gr
import os
import re
import secrets
import tempfile

os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
DEFAULT_CKPT_PATH = 'qwen/Qwen-VL-Chat'
REVISION = 'v1.0.4'
BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>"
PUNCTUATION = "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏."
uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(Path(tempfile.gettempdir()) / "gradio")

def _get_args() -> ArgumentParser:
    parser = ArgumentParser()
    parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH,
                        help="Checkpoint name or path, default to %(default)r")
    parser.add_argument("--revision", type=str, default=REVISION)
    parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only")

    parser.add_argument("--share", action="store_true", default=False,
                        help="Create a publicly shareable link for the interface.")
    parser.add_argument("--inbrowser", action="store_true", default=False,
                        help="Automatically launch the interface in a new tab on the default browser.")
    parser.add_argument("--server-port", type=int, default=8000,
                        help="Demo server port.")
    parser.add_argument("--server-name", type=str, default="127.0.0.1",
                        help="Demo server name.")

    args = parser.parse_args()
    return args

def handle_image_submission(_chatbot, task_history, file, tokenizer, model) -> tuple:
    print("handle_image_submission called")
    if file is None:
        print("No file uploaded")
        return _chatbot, task_history
    print("File received:", file)
    file_path = save_image(file, uploaded_file_dir)
    print("File saved at:", file_path)
    history_item = ((file_path,), None)
    _chatbot.append(history_item)
    task_history.append(history_item)
    return predict(_chatbot, task_history, tokenizer, model)

    
def _load_model_tokenizer(args) -> tuple:
    model_id = args.checkpoint_path
    model_dir = snapshot_download(model_id, revision=args.revision)
    tokenizer = AutoTokenizer.from_pretrained(
        model_dir, trust_remote_code=True, resume_download=True,
    )

    if args.cpu_only:
        device_map = "cpu"
    else:
        device_map = "auto"

    model = AutoModelForCausalLM.from_pretrained(
        model_dir,
        device_map=device_map,
        trust_remote_code=True,
        bf16=True,
        resume_download=True,
    ).eval()
    model.generation_config = GenerationConfig.from_pretrained(
        model_dir, trust_remote_code=True, resume_download=True,
    )

    return model, tokenizer


def _parse_text(text: str) -> str:
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split("`")
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f"<br></code></pre>"
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", r"\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>" + line
    text = "".join(lines)
    return text

def save_image(image_file, upload_dir: str) -> str:
    print("save_image called with:", image_file)
    Path(upload_dir).mkdir(parents=True, exist_ok=True)
    filename = secrets.token_hex(10) + Path(image_file.name).suffix
    file_path = Path(upload_dir) / filename
    print("Saving to:", file_path)
    with open(image_file.name, "rb") as f_input, open(file_path, "wb") as f_output:
        f_output.write(f_input.read())
    return str(file_path)


def add_file(history, task_history, file):
    if file is None:
        return history, task_history
    file_path = save_image(file)
    history = history + [((file_path,), None)]
    task_history = task_history + [((file_path,), None)]
    return history, task_history


def predict(_chatbot, task_history, tokenizer, model) -> list:
    print("predict called")
    if not _chatbot:
        return _chatbot 
    chat_query = _chatbot[-1][0]
    print("Chat query:", chat_query)

    if isinstance(chat_query, tuple):
        query = [{'image': chat_query[0]}]
    else:
        query = [{'text': _parse_text(chat_query)}]

    print("Query for model:", query)
    inputs = tokenizer.from_list_format(query)
    tokenized_inputs = tokenizer(inputs, return_tensors='pt')
    tokenized_inputs = tokenized_inputs.to(model.device)

    pred = model.generate(**tokenized_inputs)
    response = tokenizer.decode(pred.cpu()[0], skip_special_tokens=False)
    print("Model response:", response)
    if 'image' in query[0]:
        image = tokenizer.draw_bbox_on_latest_picture(response)
        if image is not None:
            image_path = save_image(image, uploaded_file_dir)
            _chatbot[-1] = (chat_query, (image_path,))
        else:
            _chatbot[-1] = (chat_query, "No image to display.")
    else:
        _chatbot[-1] = (chat_query, response)
    return _chatbot

def save_uploaded_image(image_file, upload_dir):
    if image is None:
        return None
    temp_dir = secrets.token_hex(20)
    temp_dir = Path(uploaded_file_dir) / temp_dir
    temp_dir.mkdir(exist_ok=True, parents=True)
    name = f"tmp{secrets.token_hex(5)}.jpg"
    filename = temp_dir / name
    image.save(str(filename))
    return str(filename)

def regenerate(_chatbot, task_history) -> list:
    if not task_history:
        return _chatbot
    item = task_history[-1]
    if item[1] is None:
        return _chatbot
    task_history[-1] = (item[0], None)
    chatbot_item = _chatbot.pop(-1)
    if chatbot_item[0] is None:
        _chatbot[-1] = (_chatbot[-1][0], None)
    else:
        _chatbot.append((chatbot_item[0], None))
    return predict(_chatbot, task_history, tokenizer, model)

def add_text(history, task_history, text) -> tuple:
    task_text = text
    if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
        task_text = text[:-1]
        history = history + [(_parse_text(text), None)]
        task_history = task_history + [(task_text, None)]
        return history, task_history, ""

def add_file(history, task_history, file):
    if file is None:
        return history, task_history  # Return if no file is uploaded
    file_path = file.name
    history = history + [((file.name,), None)]
    task_history = task_history + [((file.name,), None)]
    return history, task_history

def reset_user_input():
    return gr.update(value="")
    
def process_response(response: str) -> str:
    response = response.replace("<ref>", "").replace(r"</ref>", "")
    response = re.sub(BOX_TAG_PATTERN, "", response)
    return response
def process_history_for_model(task_history) -> list:
    processed_history = []
    for query, response in task_history:
        if isinstance(query, tuple): 
            query = {'image': query[0]}
        else:
            query = {'text': query}
        response = response or ""
        processed_history.append((query, response))
    return processed_history

def reset_state(task_history) -> list:
    task_history.clear()
    return []


def _launch_demo(args, model, tokenizer):
    uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(
        Path(tempfile.gettempdir()) / "gradio"
    )

    with gr.Blocks() as demo:
        gr.Markdown("""# Welcome to Tonic's Qwen-VL-Chat Bot""")
        gr.Markdown(
            """ Qwen-VL-Chat is a multimodal input model. 
本WebUI基于Qwen-VL-Chat打造,实现聊天机器人功能 但我必须修复它这么多也许我也得到一些荣誉
You can use this Space to test out the current model [qwen/Qwen-VL-Chat](https://huggingface.co/qwen/Qwen-VL-Chat) You can also use 🧑🏻‍🚀qwen/Qwen-VL-Chat🚀 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic1/VLChat?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> 
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/nXx5wbX9) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
""")
        with gr.Row():
            with gr.Column(scale=1):
                chatbot = gr.Chatbot(label='Qwen-VL-Chat')
            with gr.Column(scale=1):
                with gr.Row():
                    query = gr.Textbox(lines=2, label='Input', placeholder="Type your message here...")
                    submit_btn = gr.Button("🚀 Submit")
                with gr.Row():
                    file_upload = gr.UploadButton("📁 Upload Image", file_types=["image"])
                    submit_file_btn = gr.Button("Submit Image")
                    regen_btn = gr.Button("🤔️ Regenerate")
                    empty_bin = gr.Button("🧹 Clear History")
                task_history = gr.State([])

        submit_btn.click(
            fn=predict,
            inputs=[chatbot, task_history],
            outputs=[chatbot],
            _state=[tokenizer, model]
        )
        
        submit_file_btn.click(
            fn=handle_image_submission,
            inputs=[chatbot, task_history, file_upload],
            outputs=[chatbot, task_history],
            _state=[tokenizer, model]
        )

        regen_btn.click(
            fn=regenerate,
            inputs=[chatbot, task_history],
            outputs=[chatbot],
            _state=[tokenizer, model]
        )

        empty_bin.click(
            fn=reset_state,
            inputs=[task_history],
            outputs=[task_history],
            _state=[tokenizer, model]
        )

        query.submit(
            fn=add_text,
            inputs=[chatbot, task_history, query],
            outputs=[chatbot, task_history, query],
            _state=[tokenizer, model]
        )

        gr.Markdown("""
Note: This demo is governed by the original license of Qwen-VL. 
We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content,
including hate speech, violence, pornography, deception, etc.
(注:本演示受Qwen-VL的许可协议限制。我们强烈建议,用户不应传播及不应允许他人传播以下内容,
包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息。)""")

    demo.queue().launch()


def main():
    args = _get_args()
    model, tokenizer = _load_model_tokenizer(args)
    _launch_demo(args, model, tokenizer)

if __name__ == '__main__':
    main()