File size: 12,312 Bytes
ffba568 49bd6dc ffba568 49bd6dc 0a6faf3 32e039b 49bd6dc d3a3a84 49bd6dc 25aa84d 49bd6dc 5207986 d12dd66 2f6138a d12dd66 522f297 2f6138a 9bffb27 522f297 2f6138a 25aa84d 49bd6dc b89ed3f 49bd6dc 25aa84d 49bd6dc e3ac640 25aa84d 522f297 ce14d7b 522f297 e3ac640 ecc3149 577a43e ecc3149 49bd6dc 25aa84d 9bffb27 25aa84d 5d056e6 66499ca 25aa84d 66499ca 25aa84d 9bffb27 ed42d17 25aa84d 4cbbd3b 25aa84d 49bd6dc 25aa84d ed42d17 25aa84d 49bd6dc ed42d17 25aa84d 49bd6dc 6252649 49bd6dc ed42d17 bdfdac3 49bd6dc 7c0dbc1 32e039b 7c0dbc1 0b0cd44 7c0dbc1 ec3bf4d 7c0dbc1 ec3bf4d e485172 5207986 e485172 1a1a57c ecc3149 2f6138a e535f32 5207986 ec3bf4d e485172 5207986 e485172 5207986 e485172 5207986 e485172 49bd6dc 6252649 49bd6dc 9d0b93f 49bd6dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
from modelscope import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, snapshot_download
from argparse import ArgumentParser
from pathlib import Path
import shutil
import copy
import gradio as gr
import os
import re
import secrets
import tempfile
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
DEFAULT_CKPT_PATH = 'qwen/Qwen-VL-Chat'
REVISION = 'v1.0.4'
BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>"
PUNCTUATION = "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏."
uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(Path(tempfile.gettempdir()) / "gradio")
def _get_args() -> ArgumentParser:
parser = ArgumentParser()
parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH,
help="Checkpoint name or path, default to %(default)r")
parser.add_argument("--revision", type=str, default=REVISION)
parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only")
parser.add_argument("--share", action="store_true", default=False,
help="Create a publicly shareable link for the interface.")
parser.add_argument("--inbrowser", action="store_true", default=False,
help="Automatically launch the interface in a new tab on the default browser.")
parser.add_argument("--server-port", type=int, default=8000,
help="Demo server port.")
parser.add_argument("--server-name", type=str, default="127.0.0.1",
help="Demo server name.")
args = parser.parse_args()
return args
def handle_image_submission(_chatbot, task_history, file, tokenizer, model) -> tuple:
print("handle_image_submission called")
if file is None:
print("No file uploaded")
return _chatbot, task_history
print("File received:", file)
file_path = save_image(file, uploaded_file_dir)
print("File saved at:", file_path)
history_item = ((file_path,), None)
_chatbot.append(history_item)
task_history.append(history_item)
return predict(_chatbot, task_history, tokenizer, model)
def _load_model_tokenizer(args) -> tuple:
model_id = args.checkpoint_path
model_dir = snapshot_download(model_id, revision=args.revision)
tokenizer = AutoTokenizer.from_pretrained(
model_dir, trust_remote_code=True, resume_download=True,
)
if args.cpu_only:
device_map = "cpu"
else:
device_map = "auto"
model = AutoModelForCausalLM.from_pretrained(
model_dir,
device_map=device_map,
trust_remote_code=True,
bf16=True,
resume_download=True,
).eval()
model.generation_config = GenerationConfig.from_pretrained(
model_dir, trust_remote_code=True, resume_download=True,
)
return model, tokenizer
def _parse_text(text: str) -> str:
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f"<br></code></pre>"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>" + line
text = "".join(lines)
return text
def save_image(image_file, upload_dir: str) -> str:
print("save_image called with:", image_file)
Path(upload_dir).mkdir(parents=True, exist_ok=True)
filename = secrets.token_hex(10) + Path(image_file.name).suffix
file_path = Path(upload_dir) / filename
print("Saving to:", file_path)
with open(image_file.name, "rb") as f_input, open(file_path, "wb") as f_output:
f_output.write(f_input.read())
return str(file_path)
def add_file(history, task_history, file):
if file is None:
return history, task_history
file_path = save_image(file)
history = history + [((file_path,), None)]
task_history = task_history + [((file_path,), None)]
return history, task_history
def predict(_chatbot, task_history, tokenizer, model) -> list:
print("predict called")
if not _chatbot:
return _chatbot
chat_query = _chatbot[-1][0]
print("Chat query:", chat_query)
if isinstance(chat_query, tuple):
query = [{'image': chat_query[0]}]
else:
query = [{'text': _parse_text(chat_query)}]
print("Query for model:", query)
inputs = tokenizer.from_list_format(query)
tokenized_inputs = tokenizer(inputs, return_tensors='pt')
tokenized_inputs = tokenized_inputs.to(model.device)
pred = model.generate(**tokenized_inputs)
response = tokenizer.decode(pred.cpu()[0], skip_special_tokens=False)
print("Model response:", response)
if 'image' in query[0]:
image = tokenizer.draw_bbox_on_latest_picture(response)
if image is not None:
image_path = save_image(image, uploaded_file_dir)
_chatbot[-1] = (chat_query, (image_path,))
else:
_chatbot[-1] = (chat_query, "No image to display.")
else:
_chatbot[-1] = (chat_query, response)
return _chatbot
def save_uploaded_image(image_file, upload_dir):
if image is None:
return None
temp_dir = secrets.token_hex(20)
temp_dir = Path(uploaded_file_dir) / temp_dir
temp_dir.mkdir(exist_ok=True, parents=True)
name = f"tmp{secrets.token_hex(5)}.jpg"
filename = temp_dir / name
image.save(str(filename))
return str(filename)
def regenerate(_chatbot, task_history) -> list:
if not task_history:
return _chatbot
item = task_history[-1]
if item[1] is None:
return _chatbot
task_history[-1] = (item[0], None)
chatbot_item = _chatbot.pop(-1)
if chatbot_item[0] is None:
_chatbot[-1] = (_chatbot[-1][0], None)
else:
_chatbot.append((chatbot_item[0], None))
return predict(_chatbot, task_history, tokenizer, model)
def add_text(history, task_history, text) -> tuple:
task_text = text
if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
task_text = text[:-1]
history = history + [(_parse_text(text), None)]
task_history = task_history + [(task_text, None)]
return history, task_history, ""
def add_file(history, task_history, file):
if file is None:
return history, task_history # Return if no file is uploaded
file_path = file.name
history = history + [((file.name,), None)]
task_history = task_history + [((file.name,), None)]
return history, task_history
def reset_user_input():
return gr.update(value="")
def process_response(response: str) -> str:
response = response.replace("<ref>", "").replace(r"</ref>", "")
response = re.sub(BOX_TAG_PATTERN, "", response)
return response
def process_history_for_model(task_history) -> list:
processed_history = []
for query, response in task_history:
if isinstance(query, tuple):
query = {'image': query[0]}
else:
query = {'text': query}
response = response or ""
processed_history.append((query, response))
return processed_history
def reset_state(task_history) -> list:
task_history.clear()
return []
def _launch_demo(args, model, tokenizer):
uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(
Path(tempfile.gettempdir()) / "gradio"
)
with gr.Blocks() as demo:
gr.Markdown("""# Welcome to Tonic's Qwen-VL-Chat Bot""")
gr.Markdown(
""" Qwen-VL-Chat is a multimodal input model.
本WebUI基于Qwen-VL-Chat打造,实现聊天机器人功能 但我必须修复它这么多也许我也得到一些荣誉
You can use this Space to test out the current model [qwen/Qwen-VL-Chat](https://huggingface.co/qwen/Qwen-VL-Chat) You can also use 🧑🏻🚀qwen/Qwen-VL-Chat🚀 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic1/VLChat?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/nXx5wbX9) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
""")
with gr.Row():
with gr.Column(scale=1):
chatbot = gr.Chatbot(label='Qwen-VL-Chat')
with gr.Column(scale=1):
with gr.Row():
query = gr.Textbox(lines=2, label='Input', placeholder="Type your message here...")
submit_btn = gr.Button("🚀 Submit")
with gr.Row():
file_upload = gr.UploadButton("📁 Upload Image", file_types=["image"])
submit_file_btn = gr.Button("Submit Image")
regen_btn = gr.Button("🤔️ Regenerate")
empty_bin = gr.Button("🧹 Clear History")
task_history = gr.State([])
submit_btn.click(
fn=predict,
inputs=[chatbot, task_history],
outputs=[chatbot],
_state=[tokenizer, model]
)
submit_file_btn.click(
fn=handle_image_submission,
inputs=[chatbot, task_history, file_upload],
outputs=[chatbot, task_history],
_state=[tokenizer, model]
)
regen_btn.click(
fn=regenerate,
inputs=[chatbot, task_history],
outputs=[chatbot],
_state=[tokenizer, model]
)
empty_bin.click(
fn=reset_state,
inputs=[task_history],
outputs=[task_history],
_state=[tokenizer, model]
)
query.submit(
fn=add_text,
inputs=[chatbot, task_history, query],
outputs=[chatbot, task_history, query],
_state=[tokenizer, model]
)
gr.Markdown("""
Note: This demo is governed by the original license of Qwen-VL.
We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content,
including hate speech, violence, pornography, deception, etc.
(注:本演示受Qwen-VL的许可协议限制。我们强烈建议,用户不应传播及不应允许他人传播以下内容,
包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息。)""")
demo.queue().launch()
def main():
args = _get_args()
model, tokenizer = _load_model_tokenizer(args)
_launch_demo(args, model, tokenizer)
if __name__ == '__main__':
main() |