Tonic's picture
Update app.py
0b0cd44
raw
history blame
9.29 kB
# Copyright (c) Alibaba Cloud.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from argparse import ArgumentParser
from pathlib import Path
import copy
import gradio as gr
import os
import re
import secrets
import tempfile
from modelscope import (
AutoModelForCausalLM, AutoTokenizer, GenerationConfig, snapshot_download
)
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
DEFAULT_CKPT_PATH = 'qwen/Qwen-VL-Chat'
REVISION = 'v1.0.4'
BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>"
PUNCTUATION = "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏."
def _get_args():
parser = ArgumentParser()
parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH,
help="Checkpoint name or path, default to %(default)r")
parser.add_argument("--revision", type=str, default=REVISION)
parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only")
parser.add_argument("--share", action="store_true", default=False,
help="Create a publicly shareable link for the interface.")
parser.add_argument("--inbrowser", action="store_true", default=False,
help="Automatically launch the interface in a new tab on the default browser.")
parser.add_argument("--server-port", type=int, default=8000,
help="Demo server port.")
parser.add_argument("--server-name", type=str, default="127.0.0.1",
help="Demo server name.")
args = parser.parse_args()
return args
def _load_model_tokenizer(args):
model_id = args.checkpoint_path
model_dir = snapshot_download(model_id, revision=args.revision)
tokenizer = AutoTokenizer.from_pretrained(
model_dir, trust_remote_code=True, resume_download=True,
)
if args.cpu_only:
device_map = "cpu"
else:
device_map = "auto"
model = AutoModelForCausalLM.from_pretrained(
model_dir,
device_map=device_map,
trust_remote_code=True,
bf16=True,
resume_download=True,
).eval()
model.generation_config = GenerationConfig.from_pretrained(
model_dir, trust_remote_code=True, resume_download=True,
)
return model, tokenizer
def _parse_text(text):
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f"<br></code></pre>"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "&lt;")
line = line.replace(">", "&gt;")
line = line.replace(" ", "&nbsp;")
line = line.replace("*", "&ast;")
line = line.replace("_", "&lowbar;")
line = line.replace("-", "&#45;")
line = line.replace(".", "&#46;")
line = line.replace("!", "&#33;")
line = line.replace("(", "&#40;")
line = line.replace(")", "&#41;")
line = line.replace("$", "&#36;")
lines[i] = "<br>" + line
text = "".join(lines)
return text
def _launch_demo(args, model, tokenizer):
uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(
Path(tempfile.gettempdir()) / "gradio"
)
def predict(_chatbot, task_history):
chat_query = _chatbot[-1][0]
query = task_history[-1][0]
print("User: " + _parse_text(query))
history_cp = copy.deepcopy(task_history)
full_response = ""
history_filter = []
pic_idx = 1
pre = ""
for i, (q, a) in enumerate(history_cp):
if isinstance(q, (tuple, list)):
q = f'Picture {pic_idx}: <img>{q[0]}</img>'
pre += q + '\n'
pic_idx += 1
else:
pre += q
history_filter.append((pre, a))
pre = ""
history, message = history_filter[:-1], history_filter[-1][0]
response, history = model.chat(tokenizer, message, history=history)
image = tokenizer.draw_bbox_on_latest_picture(response, history)
if image is not None:
temp_dir = secrets.token_hex(20)
temp_dir = Path(uploaded_file_dir) / temp_dir
temp_dir.mkdir(exist_ok=True, parents=True)
name = f"tmp{secrets.token_hex(5)}.jpg"
filename = temp_dir / name
image.save(str(filename))
_chatbot[-1] = (_parse_text(chat_query), (str(filename),))
chat_response = response.replace("<ref>", "")
chat_response = chat_response.replace(r"</ref>", "")
chat_response = re.sub(BOX_TAG_PATTERN, "", chat_response)
if chat_response != "":
_chatbot.append((None, chat_response))
else:
_chatbot[-1] = (_parse_text(chat_query), response)
full_response = _parse_text(response)
task_history[-1] = (query, full_response)
print("Qwen-VL-Chat: " + _parse_text(full_response))
task_history = task_history[-10:]
return _chatbot
def regenerate(_chatbot, task_history):
if not task_history:
return _chatbot
item = task_history[-1]
if item[1] is None:
return _chatbot
task_history[-1] = (item[0], None)
chatbot_item = _chatbot.pop(-1)
if chatbot_item[0] is None:
_chatbot[-1] = (_chatbot[-1][0], None)
else:
_chatbot.append((chatbot_item[0], None))
return predict(_chatbot, task_history)
def add_text(history, task_history, text):
task_text = text
if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
task_text = text[:-1]
history = history + [(_parse_text(text), None)]
task_history = task_history + [(task_text, None)]
return history, task_history, ""
def add_file(history, task_history, file):
history = history + [((file.name,), None)]
task_history = task_history + [((file.name,), None)]
return history, task_history
def reset_user_input():
return gr.update(value="")
def reset_state(task_history):
task_history.clear()
return []
with gr.Blocks() as demo:
gr.Markdown("""# Welcome to Tonic's Qwen-VL-Chat Bot""")
gr.Markdown(
""" This WebUI is based on Qwen-VL-Chat, developed by Alibaba Cloud.
(本WebUI基于Qwen-VL-Chat打造,实现聊天机器人功能。)""")
with gr.Row():
with gr.Column(scale=1):
chatbot = gr.Chatbot(label='Qwen-VL-Chat')
with gr.Column(scale=1):
with gr.Row():
query = gr.Textbox(lines=2, label='Input', placeholder="Type your message here...")
submit_btn = gr.Button("🚀 Submit")
with gr.Row():
file_upload = gr.UploadButton("📁 Upload Image", file_types=["image"])
submit_file_btn = gr.Button("Submit Image")
regen_btn = gr.Button("🤔️ Regenerate")
empty_bin = gr.Button("🧹 Clear History")
task_history = gr.State([])
# Linking the buttons and inputs to their functions
submit_btn.click(
fn=predict,
inputs=[chatbot, task_history],
outputs=[chatbot]
)
submit_file_btn.click(
fn=add_file,
inputs=[chatbot, task_history, file_upload],
outputs=[chatbot, task_history]
)
regen_btn.click(
fn=regenerate,
inputs=[chatbot, task_history],
outputs=[chatbot]
)
empty_bin.click(
fn=reset_state,
inputs=[task_history],
outputs=[task_history]
)
query.submit(
fn=add_text,
inputs=[chatbot, task_history, query],
outputs=[chatbot, task_history, query]
)
gr.Markdown("""
Note: This demo is governed by the original license of Qwen-VL.
We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content,
including hate speech, violence, pornography, deception, etc.
(注:本演示受Qwen-VL的许可协议限制。我们强烈建议,用户不应传播及不应允许他人传播以下内容,
包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息。)""")
demo.queue().launch()
def main():
args = _get_args()
model, tokenizer = _load_model_tokenizer(args)
_launch_demo(args, model, tokenizer)
if __name__ == '__main__':
main()